Interpretable machine learning a guide for making black box models explainable

Bibliographic Details
Other Authors: Molnar, Christoph, autor (autor)
Format: Book
Language:Inglés
Published: München, Germany : Christoph Molnar 2022.
Edition:Second edition
Subjects:
See on Universidad de Deusto:https://oceano.biblioteca.deusto.es/primo-explore/search?query=any,contains,991006802971603351&tab=default_tab&search_scope=deusto_alma&vid=deusto
Request an interlibrarian loan: Email
Description
Item Description:"After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. The focus of the book is on model-agnostic methods for interpreting black box models such as feature importance and accumulated local effects, and explaining individual predictions with Shapley values and LIME. In addition, the book presents methods specific to deep neural networks"--Cubierta posterior.
Physical Description:X, 317 páginas : ilustraciones, gráficos (blanco y negro y color) ; 25 cm
Bibliography:Bibliografía: páginas 309-318 (sin numerar).
ISBN:9798411463330