Recent Advances and Applications of Machine Learning in Metal Forming Processes

Machine learning (ML) technologies are emerging in Mechanical Engineering, driven by the increasing availability of datasets, coupled with the exponential growth in computer performance. In fact, there has been a growing interest in evaluating the capabilities of ML algorithms to approach topics rel...

Descripción completa

Detalles Bibliográficos
Otros Autores: Prates, Pedro (Editor), Pereira, André (Otro)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009828017706719
Descripción
Sumario:Machine learning (ML) technologies are emerging in Mechanical Engineering, driven by the increasing availability of datasets, coupled with the exponential growth in computer performance. In fact, there has been a growing interest in evaluating the capabilities of ML algorithms to approach topics related to metal forming processes, such as: Classification, detection and prediction of forming defects; Material parameters identification; Material modelling; Process classification and selection; Process design and optimization. The purpose of this Special Issue is to disseminate state-of-the-art ML applications in metal forming processes, covering 10 papers about the abovementioned and related topics.
Descripción Física:1 electronic resource (210 p.)
ISBN:9783036557724