Use PyNNDescent and `nessvec` to index high dimensional vectors (word embeddings)

In this video, Hobson shows how to index high dimensional vectors like word embeddings using a new approximate nearest neighbor algorithm by Leland McInnes. Along the way you can see how to explore an unfamiliar Python package like PyNNDescent without ever having to leave the keyboard (tab-completio...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: Manning (Firm), pubisher (pubisher)
Otros Autores: Lane, Hobson, presenter (presenter)
Formato: Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Manning Publications 2022.
Edición:[First edition]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009825907706719
Descripción
Sumario:In this video, Hobson shows how to index high dimensional vectors like word embeddings using a new approximate nearest neighbor algorithm by Leland McInnes. Along the way you can see how to explore an unfamiliar Python package like PyNNDescent without ever having to leave the keyboard (tab-completion, `help()`, `?` operator) And you will see how to use `SpaCy` language models to retrieve all sorts of NLU tags for words, including word vectors.
Descripción Física:1 online resource (1 video file (49 min.)) : sound, color