MLOps packaging HuggingFace and GitHub container registry

MLOps packaging: HuggingFace and GitHub Container Registry Use automation to package models to GitHub Learn how to package a HuggingFace GPT2 model using automation with MLOps and pushing the result to GitHub Container Registry. With just a little bit of Python and FastAPI you can have a powerful te...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: Pragmatic AI Solutions (Firm), publisher (publisher)
Otros Autores: Deza, Alfredo, presenter (presenter)
Formato: Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Pragmatic AI Solutions [2022]
Edición:[First edition]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009825895306719
Descripción
Sumario:MLOps packaging: HuggingFace and GitHub Container Registry Use automation to package models to GitHub Learn how to package a HuggingFace GPT2 model using automation with MLOps and pushing the result to GitHub Container Registry. With just a little bit of Python and FastAPI you can have a powerful text generation API that is self-documented! Automation is a foundational piece of MLOps, and using GitHub Actions to package a model automatically and on-demand with GitHub Actions you can create robust deployments and testing scenarios for machine learning operations. Learn Objectives In this video lesson, I'll go over the details with an example repository you can use for reference including the following learning objectives: Create a FastAPI application with HuggingFace Interact with the model with HTTP from a container using FastAPI Containerize the application using GitHub Actions Create repository secrets to login and push to GitHub Container Registry (ghcr.io) Resources Example repository Practical MLOps book MLOps Maturity Model Packaging ML models.
Descripción Física:1 online resource (1 video file (15 min.)) : sound, color