Sumario: | "Michael Radwin (Intuit) prepares a recipe for applying design thinking to the development of AI/ML products. You'll discover deep customer empathy and fall in love with the customer's problem (not the team's solution), and you'll learn to go broad and narrow, focusing on what matters most to customers. Michael shows you how to get customers involved in the development process by running rapid experiments and quick prototypes. These lessons blending data science and design thinking can be applied to products that leverage supervised and unsupervised machine learning models, as well as 'old-school' AI expert systems. You'll take a look at several case studies along the way. Mint users lose $250 million in overdraft fees every year. Using the data from Mint's 10 million users, Intuit applied a machine learning algorithm that predicts if you're likely, within three days, to have an overdraft. Mint alerts you in time, with helpful suggestions on how to avoid the exorbitant insufficient funds fee. QuickBooks Self-Employed has an ML model and UX that allows automatic categorization of whether trips are business or personal to accurately rack up potential tax deductions. TurboTax's Tax Knowledge Engine uses advanced AI to translate more than 80,000 pages of US tax requirements and instructions into a software oracle that can explain computations to DIY tax filers so they have greater confidence in the calculations in their returns, and can maybe save some of the 7 billion hours Americans spend collectively filing taxes every year. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page.
|