Water Resources in a Variable and Changing Climate

Climate change will bring about significant changes to the capacity of, and the demand on, water resources. The resulting changes include increasing climate variability that is expected to affect hydrologic conditions. The effects of climate variability on various meteorological variables have been...

Descripción completa

Detalles Bibliográficos
Otros Autores: Aymar Y. Bossa (auth), Bernd Diekkrüger, Hong-Ming Liu, Eihab Fathelrahman, Charles B. Niwagaba, Md Sumon Shahriar, Zongli Li, James Pritchett, Jonathan E. Kenny, Mohammad Kamruzzaman, Robert Brooks, Mike D. Burch, Leszek Sobkowiak, Janel Hanrahan, Sergey Kravtsov, Mohammed Saif Al-Kalbani, Wen-Cheng Huang, Wen-Cheng Liu, Euloge K. Agbossou, Alistair Grinham, Patrick Willems, M. Mercedes Taboada-Castro, Timothy O'Higgins, Alec Zuo, John Boland, Mushtaque Ahmed, M. Teresa Taboada-Castro, Asma Abahussain, Mary Akurut, Rupak Aryal, Robert I. Daly, Jyun-Long Lee, Amalia Davies, Jun Xia, Jan Jacob Keizer, Martin F. Price, Simon Beecham, Morgan Bida, Leon van der Linden, Edwyna Harris, Joao Pedro Nunes, Ann Wheeler, Henning Bjornlund, Ricardo Arias, Todd Pagano, Stephen Davies, Paul Roebber, Lingling Zhao, M. Luz Rodríguez-Blanco
Formato: Libro electrónico
Idioma:Inglés
Publicado: MDPI - Multidisciplinary Digital Publishing Institute 2015
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009746145606719
Descripción
Sumario:Climate change will bring about significant changes to the capacity of, and the demand on, water resources. The resulting changes include increasing climate variability that is expected to affect hydrologic conditions. The effects of climate variability on various meteorological variables have been extensively observed in many regions around the world. Atmospheric circulation, topography, land use and other regional features modify global changes to produce unique patterns of change at the regional scale. As the future changes to these water resources cannot be measured in the present, hydrological models are critical in the planning required to adapt our water resource management strategies to future climate conditions. Such models include catchment runoff models, reservoir management models, flood prediction models, groundwater recharge and flow models, and crop water balance models. In water-scarce regions such as Australia, urban water systems are particularly vulnerable to rapid population growth and climate change. In the presence of climate change induced uncertainty, urban water systems need to be more resilient and multi-sourced. Decreasing volumetric rainfall trends have an effect on reservoir yield and operation practices. Severe intensity rainfall events can cause failure of drainage system capacity and subsequent urban flood inundation problems. Policy makers, end users and leading researchers need to work together to develop a consistent approach to interpreting the effects of climate variability and change on water resources. This Special Edition includes papers by international experts who have investigated climate change impacts on a variety of systems including irrigation and water markets, land use changes and vegetation growth, lake water levels and quality and sea level rises. These investigations have been conducted in many regions of the world including the USA, China, East Africa, Australia, Taiwan and the Sultanate of Oman.