Face analysis under uncontrolled conditions from face detection to expression recognition
Face analysis is essential for a large number of applications such as human-computer interaction or multimedia (e.g. content indexing and retrieval). Although many approaches are under investigation, performance under uncontrolled conditions is still not satisfactory. The variations that impact faci...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
John Wiley & Sons, Inc
[2022]
|
Colección: | Sciences. Image. Information seeking in images and videos
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724224106719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Preface
- Part 1. Facial Landmark Detection
- Introduction to Part 1
- Chapter 1. Facial Landmark Detection
- 1.1. Facial landmark detection in still images
- 1.1.1. Generative approaches
- 1.1.2. Discriminative approaches
- 1.1.3. Deep learning approaches
- 1.1.4. Handling challenges
- 1.1.5. Summary
- 1.2. Extending facial landmark detection to videos
- 1.2.1. Tracking by detection
- 1.2.2. Box, landmark and pose tracking
- 1.2.3. Adaptive approaches
- 1.2.4. Joint approaches
- 1.2.5. Temporal constrained approaches
- 1.2.6. Summary
- 1.3. Discussion
- 1.4. References
- Chapter 2. Effectiveness of Facial Landmark Detection
- 2.1. Overview
- 2.2. Datasets and evaluation metrics
- 2.2.1. Image and video datasets
- 2.2.2. Face preprocessing and data augmentation
- 2.2.3. Evaluation metrics
- 2.2.4. Summary
- 2.3. Image and video benchmarks
- 2.3.1. Compiled results on 300W
- 2.3.2. Compiled results on 300VW
- 2.4. Cross-dataset benchmark
- 2.4.1. Evaluation protocol
- 2.4.2. Comparison of selected approaches
- 2.5. Discussion
- 2.6. References
- Chapter 3. Facial Landmark Detection with Spatio-temporal Modeling
- 3.1. Overview
- 3.2. Spatio-temporal modeling review
- 3.2.1. Hand-crafted approaches
- 3.2.2. Deep learning approaches
- 3.2.3. Summary
- 3.3. Architecture design
- 3.3.1. Coordinate regression networks
- 3.3.2. Heatmap regression networks
- 3.4. Experiments
- 3.4.1. Datasets and evaluation protocols
- 3.4.2. Implementation details
- 3.4.3. Evaluation on SNaP-2DFe
- 3.4.4. Evaluation on 300VW
- 3.4.5. Comparison with existing models
- 3.4.6. Qualitative results
- 3.4.7. Properties of the networks
- 3.5. Design investigations
- 3.5.1. Encoder-decoder
- 3.5.2. Complementarity between spatial and temporal information.
- 3.5.3. Complementarity between local and global motion
- 3.6. Discussion
- 3.7. References
- Conclusion to Part 1
- Part 2. Facial Expression Analysis
- Introduction to Part 2
- Chapter 4. Extraction of Facial Features
- 4.1. Introduction
- 4.2. Face detection
- 4.2.1. Point-of-interest detection algorithms
- 4.2.2. Face alignment approaches
- 4.2.3. Synthesis
- 4.3. Face normalization
- 4.3.1. Dealing with head pose variations
- 4.3.2. Dealing with facial occlusions
- 4.3.3. Synthesis
- 4.4. Extraction of visual features
- 4.4.1. Facial appearance features
- 4.4.2. Facial geometric features
- 4.4.3. Facial dynamics features
- 4.4.4. Facial segmentation models
- 4.4.5. Synthesis
- 4.5. Learning methods
- 4.5.1. Classification versus regression
- 4.5.2. Fusion model
- 4.5.3. Synthesis
- 4.6. Conclusion
- 4.7. References
- Chapter 5. Facial Expression Modeling
- 5.1. Introduction
- 5.2. Modeling of the affective state
- 5.2.1. Categorical modeling
- 5.2.2. Dimensional modeling
- 5.2.3. Synthesis
- 5.3. The challenges of facial expression recognition
- 5.3.1. The variation of the intensity of the expressions
- 5.3.2. Variation of facial movement
- 5.3.3. Synthesis
- 5.4. The learning databases
- 5.4.1. Improvement of learning data
- 5.4.2. Comparison of learning databases
- 5.4.3. Synthesis
- 5.5. Invariance to facial expression intensities
- 5.5.1. Macro-expression
- 5.5.2. Micro-expression
- 5.5.3. Synthesis
- 5.6. Invariance to facial movements
- 5.6.1. Pose variations (PV) and large displacements (LD)
- 5.6.2. Synthesis
- 5.7. Conclusion
- 5.8. References
- Chapter 6. Facial Motion Characteristics
- 6.1. Introduction
- 6.2. Characteristics of the facial movement
- 6.2.1. Local constraint of magnitude and direction
- 6.2.2. Local constraint of the motion distribution.
- 6.2.3. Motion propagation constraint
- 6.3. LMP
- 6.3.1. Local consistency of the movement
- 6.3.2. Consistency of local distribution
- 6.3.3. Coherence in the propagation of the movement
- 6.4. Conclusion
- 6.5. References
- Chapter 7. Micro- and Macro-Expression Analysis
- 7.1. Introduction
- 7.2. Definition of a facial segmentation model
- 7.3. Feature vector construction
- 7.3.1. Motion features vector
- 7.3.2. Geometric features vector
- 7.3.3. Features fusion
- 7.4. Recognition process
- 7.5. Evaluation on micro- and macro-expressions
- 7.5.1. Learning databases
- 7.5.2. Micro-expression recognition
- 7.5.3. Macro-expressions recognition
- 7.5.4. Synthesis of experiments on micro- and macro-expressions
- 7.6. Same expression with different intensities
- 7.6.1. Data preparation
- 7.6.2. Fractional time analysis
- 7.6.3. Analysis on a different time frame
- 7.6.4. Synthesis of experiments on activation segments
- 7.7. Conclusion
- 7.8. References
- Chapter 8. Towards Adaptation to Head Pose Variations
- 8.1. Introduction
- 8.2. Learning database challenges
- 8.3. Innovative acquisition system (SNaP-2DFe)
- 8.4. Evaluation of face normalization methods
- 8.4.1. Does the normalization preserve the facial geometry?
- 8.4.2. Does normalization preserve facial expressions?
- 8.5. Conclusion
- 8.6. References
- Conclusion to Part 2
- List of Authors
- Index
- EULA.