Fracture, Fatigue, and Structural Integrity of Metallic Materials and Components Undergoing Random or Variable Amplitude Loadings

Most metallic components and structures are subjected, in service, to random or variable amplitude loadings. There are many examples: vehicles subjected to loadings and vibrations caused by road irregularity and engine, structures exposed to wind, off-shore platforms undergoing wave-loadings, and so...

Descripción completa

Detalles Bibliográficos
Otros Autores: Benasciutti, Denis (Editor), Whittaker, Mark (Otro), Dirlik, Turan
Formato: Libro electrónico
Idioma:Inglés
Publicado: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009672618806719
Descripción
Sumario:Most metallic components and structures are subjected, in service, to random or variable amplitude loadings. There are many examples: vehicles subjected to loadings and vibrations caused by road irregularity and engine, structures exposed to wind, off-shore platforms undergoing wave-loadings, and so on. Just like constant amplitude loadings, random and variable amplitude loadings can make fatigue cracks initiate and propagate, even up to catastrophic failures. Engineers faced with the problem of estimating the structural integrity and the fatigue strength of metallic structures, or their propensity to fracture, usually make use of theoretical, numerical, or experimental approaches. This reprint collects a series of recent scientific contributions aimed at providing an up-to-date overview of approaches and case studies—theoretical, numerical or experimental—on several topics in the field of fracture, fatigue strength, and the structural integrity of metallic components subjected to random or variable amplitude loadings.
Descripción Física:1 electronic resource (190 p.)