Hybrid Systems for Marine Energy Harvesting

Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting tech...

Descripción completa

Detalles Bibliográficos
Otros Autores: Rosa-Santos, Paulo Jorge (Editor), Taveira Pinto, Francisco (Otro), López Gallego, Mario, Rodríguez Castillo, Claudio Alexis
Formato: Libro electrónico
Idioma:Inglés
Publicado: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009672612906719
Descripción
Sumario:Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting technologies and resources. In the scope of this Special Issue, hybridization is understood in three different manners: (i) combination of technologies to harvest different MREs (e.g., wave energy converters combined with wind turbines); (ii) combination of different working principles to harvest the same resource (e.g., oscillating water column with an overtopping device to harvest wave energy); or (iii) integration of harvesting technologies in multifunctional platforms and structures (e.g., integration of wave energy converters in breakwaters). This Special Issue presents cutting-edge research on the development and testing of hybrid technologies for harvesting MREs and intends to inform interested readers on the most recent advances in this key topic.
Descripción Física:1 electronic resource (182 p.)