Distributed machine learning with Python accelerating model training and serving with distributed systems

Chapter 2: Parameter Server and All-Reduce -- Technical requirements -- Parameter server architecture -- Communication bottleneck in the parameter server architecture -- Sharding the model among parameter servers -- Implementing the parameter server -- Defining model layers -- Defining the parameter...

Descripción completa

Detalles Bibliográficos
Otros Autores: Wang, Guanhua, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham ; Mumbai : Packt Publishing 2022.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009660437406719
Descripción
Sumario:Chapter 2: Parameter Server and All-Reduce -- Technical requirements -- Parameter server architecture -- Communication bottleneck in the parameter server architecture -- Sharding the model among parameter servers -- Implementing the parameter server -- Defining model layers -- Defining the parameter server -- Defining the worker -- Passing data between the parameter server and worker -- Issues with the parameter server -- The parameter server architecture introduces a high coding complexity for practitioners -- All-Reduce architecture -- Reduce -- All-Reduce -- Ring All-Reduce.
Notas:Includes index.
Descripción Física:1 online resource (284 pages)
ISBN:9781801817219