Integrated Water Resources Research Advancements in Understanding to Improve Future Sustainability

Anthropogenic and natural disturbances to freshwater quantity and quality are a greater issue for society than ever before. To successfully restore water resources requires understanding the interactions between hydrology, climate, land use, water quality, ecology, and social and economic pressures....

Descripción completa

Detalles Bibliográficos
Otros Autores: Hubbart, Jason A. (Editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009654557806719
Descripción
Sumario:Anthropogenic and natural disturbances to freshwater quantity and quality are a greater issue for society than ever before. To successfully restore water resources requires understanding the interactions between hydrology, climate, land use, water quality, ecology, and social and economic pressures. This Special Issue of Water includes cutting edge research broadly addressing investigative areas related to experimental study designs and modeling, freshwater pollutants of concern, and human dimensions of water use and management. Results demonstrate the immense, globally transferable value of the experimental watershed approach, the relevance and critical importance of current integrated studies of pollutants of concern, and the imperative to include human sociological and economic processes in water resources investigations. In spite of the latest progress, as demonstrated in this Special Issue, managers remain insufficiently informed to make the best water resource decisions amidst combined influences of land use change, rapid ongoing human population growth, and changing environmental conditions. There is, thus, a persistent need for further advancements in integrated and interdisciplinary research to improve the scientific understanding, management, and future sustainability of water resources.
Descripción Física:1 electronic resource (364 p.)