Analyzing and Visualizing Data with F#

In this report, F# contributor Tomas Petricek explains many of the key features of the F# language that make it a great tool for data science and machine learning. Real world examples take you through the entire data science workflow with F#, from data access and analysis to presenting the results....

Descripción completa

Detalles Bibliográficos
Otros Autores: Petricek, Tomas, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: O'Reilly Media, Inc 2015.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631620106719
Descripción
Sumario:In this report, F# contributor Tomas Petricek explains many of the key features of the F# language that make it a great tool for data science and machine learning. Real world examples take you through the entire data science workflow with F#, from data access and analysis to presenting the results. You'll learn about: How F# and its unique features—such as type providers—ease the chore of data access The process of data analysis and visualization, using the Deedle library, R type provider and the XPlot charting library Implementations for a clustering algorithm using the standard F# library and how the F# type inference helps you understand your code The report also includes a list of resources to help you learn more about using F# for data science.
Descripción Física:1 online resource (40 pages)
Bibliografía:Includes bibliographical references.
ISBN:9781492048350