The Hadoop Performance Myth

The wish lists of many data-driven organizations seem reasonable enough. They’d like to capitalize on real-time data analysis, move beyond batch processing for time-critical insights, allow multiple users to share cluster resources, and provide predictable service levels. However, fundamental perfor...

Descripción completa

Detalles Bibliográficos
Otros Autores: Webster, Courtney, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: O'Reilly Media, Inc 2016.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631169106719
Descripción
Sumario:The wish lists of many data-driven organizations seem reasonable enough. They’d like to capitalize on real-time data analysis, move beyond batch processing for time-critical insights, allow multiple users to share cluster resources, and provide predictable service levels. However, fundamental performance limitations of complex distributed systems such as Hadoop prevent much of this from happening. In this report, Courtney Webster examines the root cause of these performance problems and explains why best practices for mitigating them—cluster tuning, provisioning, and even cluster isolation for mission critical jobs—don’t provide viable, scalable, or long-term solutions. Organizations have been pushing Hadoop and other distributed systems to their performance breaking points as they seek to use clusters as shared resources across multiple business units and individual users. Once they hit this performance wall, companies will find it difficult to deliver on the big data promise at scale. Read this report to find out what the implications are for your organization.
Descripción Física:1 online resource (15 pages)
Bibliografía:Includes bibliographical references.
ISBN:9781492042532