MakeoverMonday improving how we visualize and analyze data, one chart at a time

Explore different perspectives and approaches to create more effective visualizations #MakeoverMonday offers inspiration and a giant dose of perspective for those who communicate data. Originally a small project in the data visualization community, #MakeoverMonday features a weekly chart or graph an...

Descripción completa

Detalles Bibliográficos
Otros Autores: Kriebel, Andy, author (author), Murray, Eva, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley 2018.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630535506719
Tabla de Contenidos:
  • Intro
  • #MakeoverMonday
  • Contents
  • Foreword
  • Acknowledgments
  • From Andy and Eva
  • From Andy
  • From Eva
  • About the Authors
  • Andy Kriebel
  • Eva Murray
  • Part I
  • Introduction
  • What Is Makeover Monday?
  • How Did Makeover Monday Start?
  • The Community Project
  • The Andys: Makeover Monday 2016
  • The Murray/Cotgreave Swap: Makeover Monday 2017
  • The Next Phase: Makeover Monday 2018
  • Pillars of Makeover Monday
  • Developing Technical Skills
  • Building a Data Visualization Portfolio
  • Learning and Inspiration
  • Networking
  • Demonstrating Leadership
  • Making an Impact
  • How to Use this book
  • Part II
  • Chapter 1 Habits of a Good Data Analyst
  • Approaching Unfamiliar Data
  • Identify the Challenges
  • Gain Insights from Metadata
  • Explore the Data
  • Analysis versus Visualization
  • Take Your Time
  • Build Context Through Additional Research
  • Read the Available Information
  • Seek Additional Information
  • Find Insights
  • Educating Your Audience
  • Communicate Clearly
  • Ask Questions
  • Summary
  • Chapter 2 Data Quality and Accuracy
  • Working with Incomplete Data
  • Incomplete Data
  • Missing Data
  • Excluding Data
  • Tips for Working with Incomplete or Missing Data
  • Overcounting Data
  • Sense-Checking Data
  • Trump's Tweets
  • Is Puerto Rico a State?
  • Is the Data Aggregable?
  • Adult Obesity in the United States
  • Averages of Averages
  • Substantiating Claims with Data
  • Summary
  • Chapter 3 Know and Understand the Data
  • Using Appropriate Aggregations
  • Can the Data Be Aggregated?
  • Basic Aggregation Types
  • Explaining Metrics
  • Know Your Audience
  • Using Appropriate Metrics
  • Creating New Metrics to Tell a Different Story
  • Identifying and Correcting Mistakes
  • Time Series Analysis
  • Univariate Time Series
  • Visualizing Seasonality
  • Using Moving Averages for Smoothing.
  • Variance from a Point in Time
  • Cycle Plots
  • Calendar Heat Map
  • Summary
  • Chapter 4 Keep It Simple
  • What Is Simplicity?
  • Simplicity in Design
  • Simplicity in Layout and Positioning
  • Simplicity in Colors and Icons
  • Simplicity in Analysis
  • Getting Started with New Data
  • Start Simple
  • Know When to Stop
  • Simplicity in Storytelling
  • Finding Insights
  • Focusing on a Key Message
  • Summary
  • Chapter 5 Attention to Detail
  • Typos
  • Punctuation
  • Formatting
  • Formatting Charts Effectively
  • Universal Formatting
  • Crediting Images and Data Sources
  • Summary
  • Chapter 6 Designing for the Audience
  • Creating an Effective Design
  • What Is the Purpose?
  • Who Is the Audience?
  • Sketching
  • Planning the Layout
  • Designing for Mobile
  • Know Your Audience
  • Information Displays
  • Color Choices
  • Use of White Space
  • Keep It Simple
  • Bringing It All Together
  • Using Visual Cues for Additional Information
  • Using Icons and Shapes
  • Proper Attributions
  • Go Easy on the Shapes
  • Storytelling
  • Finding a Story and Sticking to It
  • Long-Form Storytelling
  • Think Like a Data Journalist
  • Reviewing Your Work to Improve Its Quality
  • Take a Step Back
  • Ask a Friend
  • Viz Review
  • Summary
  • Chapter 7 Trying New Things
  • Developing a Sharing Culture
  • Circular Charts
  • Images from Dot Plots
  • Patterns and Shapes
  • Waffle Charts
  • Tile Maps
  • Borders and Lines
  • Summary
  • Chapter 8 Iterate to Improve
  • Why Iterate?
  • Agile Data Visualization
  • Examples of Effective Iteration
  • Louise Heath: The Price of Oil versus Gold
  • Wale Ilori: Air Quality Above America
  • Paul Griffith: Le Tour de France
  • Rodrigo Calloni: India's Broken Toilets
  • Sarah Bartlett: The Timing of Baby Making
  • Daniel Caroli: The UK Economy Since the Brexit Vote
  • Adolfo Hernandez: Baseball Demographics, 1947-2016.
  • Giving and Receiving Feedback
  • Giving Effective Feedback
  • Receiving Feedback
  • Summary
  • Chapter 9 Effective Use of Color
  • The Significance of Color in Data Visualization
  • How Color Is Used to Tell Stories
  • Using Color to Evoke Emotions
  • Positive Results and Emotions
  • Negative Results and Emotions
  • Using Color to Create Associations
  • Color Associations with Brands
  • Color Associations with Topics
  • Color Associations Across Multiple Charts
  • Using Color to Highlight
  • Best Practices for Using Color
  • Less Is More
  • Considerations for Color Blindness
  • Using Background Colors
  • Using Text as a Color Legend
  • Summary
  • Chapter 10 Choosing the Right Chart Type
  • Area Charts
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Stacked Bar Charts
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Diverging Bar Charts
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Filled Maps
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Donut and Pie Charts
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Packed Bubble Charts
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Treemaps
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Slopegraphs
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Connected Scatterplots
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Circular Histograms
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Radial Bar Charts
  • Purpose
  • Description
  • Examples
  • Alternatives
  • Resources
  • Summary
  • Chapter 11 Effective Use of Text
  • Effective Titles and Subtitles
  • Using Questions as Titles
  • Making Definitive Statements
  • Using Descriptive Titles
  • Working with Quirky, Funny, and Poetic Titles
  • Delivering on Your Promises
  • What Is Your Key Message?
  • State Your Message
  • Semantics Matter
  • Big Ass Numbers
  • Call to Action.
  • Instructions and Explanations
  • Filters
  • Hover Interactivity
  • Explanations
  • Summary
  • Chapter 12 Using Context to Inform
  • The Importance of Context
  • Lack of Context
  • Using Simple Metrics
  • Big Ass Numbers
  • Color Coding
  • Reference Lines
  • Tooltips
  • Subtitles
  • Methods for Communicating Context
  • Indicators and Arrows
  • Comparing Time Periods
  • Normalizing the Data
  • Supplementing the Data
  • Summary
  • Part III
  • The Community
  • Long-Term Contributors
  • Educators
  • Employers
  • Organizations
  • Nonprofits
  • Social Impact
  • Makeover Monday Live Events
  • Makeover Monday Enterprise Edition
  • Source Lines
  • Index
  • EULA.