Machine Learning Using R

This book is inspired by the Machine Learning Model Building Process Flow, which provides the reader the ability to understand a ML algorithm and apply the entire process of building a ML model from the raw data. This new paradigm of teaching Machine Learning will bring about a radical change in per...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramasubramanian, Karthik. author (author), Singh, Abhishek. author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berkeley, CA : Apress 2017.
Edición:1st ed. 2017.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630305706719
Tabla de Contenidos:
  • Chapter 1: Introduction to Machine Learning and R
  • Chapter 2: Data Preparation and Exploration
  • Chapter 3: Sampling and Resampling Techniques
  • Chapter 4: Visualization of Data
  • Chapter 5: Feature Engineering
  • Chapter 6: Machine Learning Models: Theory and Practice
  • Chapter 7: Machine Learning Model Evaluation.-Chapter 8: Model Performance Improvement
  • Chapter 9: Scalable Machine Learning and related technology.-.