Machine Learning Using R

This book is inspired by the Machine Learning Model Building Process Flow, which provides the reader the ability to understand a ML algorithm and apply the entire process of building a ML model from the raw data. This new paradigm of teaching Machine Learning will bring about a radical change in per...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramasubramanian, Karthik. author (author), Singh, Abhishek. author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berkeley, CA : Apress 2017.
Edición:1st ed. 2017.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630305706719
Descripción
Sumario:This book is inspired by the Machine Learning Model Building Process Flow, which provides the reader the ability to understand a ML algorithm and apply the entire process of building a ML model from the raw data. This new paradigm of teaching Machine Learning will bring about a radical change in perception for many of those who think this subject is difficult to learn. Though theory sometimes looks difficult, especially when there is heavy mathematics involved, the seamless flow from the theoretical aspects to example-driven learning provided in Blockchain and Capitalism makes it easy for someone to connect the dots. For every Machine Learning algorithm covered in this book, a 3-D approach of theory, case-study and practice will be given. And where appropriate, the mathematics will be explained through visualization in R. All practical demonstrations will be explored in R, a powerful programming language and software environment for statistical computing and graphics. The various packages and methods available in R will be used to explain the topics. In the end, readers will learn some of the latest technological advancements in building a scalable machine learning model with Big Data.
Descripción Física:1 online resource (XXIII, 566 p. 209 illus., 155 illus. in color.)