Power electronics handbook

Power Electronics Handbook, Fourth Edition, brings together over 100 years of combined experience in the specialist areas of power engineering to offer a fully revised and updated expert guide to total power solutions. Designed to provide the best technical and most commercially viable solutions ava...

Descripción completa

Detalles Bibliográficos
Otros Autores: Rashid, Muhammad, author (author), Rashid, Muhammad H., editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Oxford, England ; Cambridge, Massachusetts : Butterworth-Heinemann 2018.
Edición:Fourth edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630279206719
Tabla de Contenidos:
  • Front Cover
  • Power Electronics Handbook
  • Copyright
  • Table of Contents
  • Contributors
  • Chapter 1: Introduction
  • 1.1. Power Electronics Defined
  • 1.2. Key Characteristics
  • 1.2.1. The Efficiency Objective-The Switch
  • 1.2.2. The Reliability Objective-Simplicity and Integration
  • 1.3. Trends in Power Supplies
  • 1.4. Conversion Examples
  • 1.4.1. Single-Switch Circuits
  • 1.4.2. The Method of Energy Balance
  • 1.5. Tools for Analysis and Design
  • 1.5.1. The Switch Matrix
  • 1.5.2. Implications of Kirchhoff's Voltage and Current Laws
  • 1.5.3. Resolving the Hardware Problem-Semiconductor Devices
  • 1.5.4. Resolving the Software Problem-Switching Functions
  • 1.5.5. Resolving the Interface Problem-Lossless Filter Design
  • 1.6. Sample Applications
  • 1.7. Summary
  • References
  • Section I: Power Electronic Devices
  • Chapter 2: Semiconductor Diodes and Transistors
  • 2.1. Semiconductor Diode
  • 2.1.1. Static Characteristics
  • 2.1.2. Dynamic Characteristics
  • 2.1.3. Common Types of Diodes
  • 2.1.4. Evaluating the Dynamic Characteristics of Real Diodes
  • 2.1.5. Series and Parallel Connection of Power Diodes
  • 2.1.6. Typical Application of Diodes
  • 2.1.6.1. Rectifiers
  • 2.1.6.2. Freewheeling
  • 2.1.6.3. Voltage Multiplier
  • 2.1.7. PSPICE Model
  • 2.2. Power Bipolar Transistor
  • 2.2.1. Basic Structure and Operation
  • 2.2.2. Static Characteristics
  • 2.2.3. Safe Operation Area
  • 2.2.4. Switching Characteristics
  • 2.2.5. Transistor Base Driver Circuits
  • 2.2.6. BJT Applications
  • 2.2.7. PSPICE Model
  • 2.3. Power MOSFET
  • 2.3.1. Basic Structure
  • 2.3.2. Static Characteristics
  • 2.3.2.1. Ohmic Region
  • 2.3.2.2. Cut-off Region
  • 2.3.2.3. Active Region
  • 2.3.3. Switching Characteristics
  • 2.3.3.1. Turn-on Analysis
  • 2.3.3.2. Turn-off Analysis
  • 2.3.4. Safe Operation Area
  • 2.3.5. MOSFET Applications.
  • 2.3.6. PSPICE Model
  • 2.4. Insulated Gate Bipolar Transistor
  • 2.4.1. Basic Structure
  • 2.4.2. Static Characteristics
  • 2.4.3. Switching Characteristics
  • 2.4.3.1. Turn-on Analysis
  • 2.4.3.2. Turn-off Analysis
  • 2.4.4. IGBT Applications
  • 2.4.5. PSPICE Model
  • 2.5. Swtiching evaluation of a Real MOSFET
  • 2.5.1. Results for Sw1 ON and Sw2 OFF and Rpot at the Maximum Resistance
  • 2.5.2. Results for Sw1 ON and Sw2 OFF and Rpot at the Minimum Resistance
  • 2.5.3. Results for Sw1 and Sw2 ON and Rpot at the Maximum Resistance
  • 2.5.4. Results for Sw1 and Sw2 OFF and Rpot at the Maximum Resistance
  • 2.6. Heatsink Thermal Design for Power Semiconductors
  • 2.6.1. Heatsink Design
  • 2.7. Transistor Selection Criteria
  • References
  • Chapter 3: Thyristors
  • 3.1. Introduction
  • 3.2. Basic Structure and Operation
  • 3.3. Static Characteristics
  • 3.3.1. Current-Voltage Curves for Thyristors
  • 3.3.2. Edge and Surface Terminations
  • 3.3.3. Packaging
  • 3.4. Dynamic Switching Characteristics
  • 3.4.1. Cathode Shorts
  • 3.4.2. Anode Shorts
  • 3.4.3. Amplifying Gate
  • 3.4.4. Temperature Dependencies
  • 3.5. Thyristor Parameters
  • 3.6. Types of Thyristors
  • 3.6.1. SCRs and GTOs
  • 3.6.1.1. On-State Characteristics
  • 3.6.1.2. Off-State Characteristics
  • 3.6.1.3. Rate of Rise of Off-State Voltage (dvD/dt)
  • 3.6.1.4. Gate Triggering Characteristics
  • 3.6.1.5. GTO Switching Phases
  • Turn-on
  • On-state
  • Turn-off
  • Off-state period
  • 3.6.1.6. GTO SPICModel
  • 3.6.2. MOS-Controlled Thyristors
  • 3.6.2.1. Equivalent Circuit and Switching Characteristics
  • 3.6.2.2. Turn-On and Turn-Off
  • 3.6.2.3. Comparison of MCT and Other Power Devices
  • 3.6.2.4. Protection of MCTs
  • Paralleling of MCTs
  • Overcurrent protection
  • Snubbers
  • Simulation model of an MCT
  • 3.6.3. Generation-1 and Generation-2 MCTs
  • 3.6.4. N-channel MCT.
  • 3.6.5. Base Resistance-Controlled Thyristor [28]
  • 3.6.6. MOS Turn-off Thyristor [29]
  • 3.6.7. Static Induction Thyristors
  • 3.6.8. Optically Triggered Thyristors
  • 3.6.9. Bi-directional Controlled Thyristors
  • 3.7. Gate Drive Requirements
  • 3.7.1. Snubber Circuits
  • 3.7.2. Gate Circuits
  • 3.8. Applications
  • 3.8.1. DC-AC Utility Inverters
  • 3.8.2. Motor Control
  • 3.8.3. VAR Compensators and Static Switching Systems
  • 3.8.4. Lighting Control Circuits
  • References
  • Chapter 4: Static Induction Devices
  • 4.1. Introduction
  • 4.2. Theory of Static Induction Devices
  • 4.3. Characteristics of SIT
  • 4.4. Bipolar Mode Operation of SI devices (BSIT)
  • 4.5. Emitters for Static Induction Devices
  • 4.6. Static Induction Diode
  • 4.7. Lateral Punch-Through Transistor
  • 4.8. Static Induction Transistor Logic
  • 4.9. BJT Saturation Protected by SIT
  • 4.10. Static Induction MOS Transistor
  • 4.11. Space Charge Limiting Load (SCLL)
  • 4.12. Power MOS Transistors
  • 4.13. Static Induction Thyristor
  • 4.14. Gate Turn Off Thyristor
  • References
  • Chapter 5: SiC and GaN Power Semiconductor Devices
  • 5.1. Background
  • 5.2. Silicon Carbide and Gallium Nitride Materials
  • 5.2.1. Silicon Carbide Polytypes
  • 5.2.2. Gallium Nitride Crystal Structures
  • 5.2.2.1. Silicon Carbide and Gallium Nitride Physical and Electrical Properties
  • 5.2.2.2. Critical Electric Field
  • 5.2.2.3. Intrinsic Carrier Concentration
  • 5.2.2.4. Saturated Drift Velocity
  • 5.2.2.5. Thermal Stability
  • 5.2.2.6. Coefficient of Thermal Expansion
  • 5.2.2.7. Figure of Merit
  • FOM for materials and technology
  • FOM for devices
  • 5.3. SiC Power Devices
  • 5.3.1. Introduction
  • 5.3.2. SiC Power Diodes
  • 5.3.2.1. SiC Schottky Diode
  • 5.3.2.2. SiC PiN Diode
  • 5.3.2.3. SiC Junction Barrier Schottky Diode
  • 5.3.3. SiC MOSFET
  • 5.3.4. SiC JFET
  • 5.3.5. SiC BJT.
  • 5.3.6. SiC IGBT
  • 5.3.7. SiC Thyristor
  • 5.4. GaN Power Devices
  • 5.4.1. Lateral GaN Schottky Barrier Diodes
  • 5.4.2. Vertical GaN PiN Diodes
  • 5.4.3. GaN JFET
  • 5.4.3.1. Vertical JFET
  • 5.4.3.2. Lateral Channel JFET With Vertical Drift Region
  • 5.4.4. GaN MOSFET
  • 5.4.4.1. Vertical Trench MOSFET
  • 5.4.4.2. Lateral MOSFET
  • 5.4.5. GaN HEMT
  • 5.4.5.1. GaN HEMT Structure
  • 5.4.5.2. GaN HEMT DC Characteristics
  • 5.4.5.3. GaN HEMT Design Considerations
  • Appendix. Lightly Doped Drift Region Thickness
  • References
  • Further Reading
  • Chapter 6: Power Electronic Modules
  • 6.1. Introduction
  • 6.2. Discrete Power Devices Versus Power Modules
  • 6.3. An Example of Power Module
  • 6.4. Manufacturing Process
  • 6.4.1. Semiconductor Chips
  • 6.4.2. Die Attach
  • 6.4.3. Wire Bonds
  • 6.4.4. DBC Substrate
  • 6.4.5. Baseplate
  • 6.5. Types of Power Electronic Modules
  • 6.5.1. A Survey of Power Electronic Module Topologies
  • 6.5.2. Power Semiconductor Devices Used in Power Electronic Modules
  • 6.5.3. SiC Power Semiconductor Devices in Power Modules
  • 6.6. Thermal Management of Power Modules
  • 6.6.1. The Purpose of Thermal Management
  • 6.6.2. Equivalent Thermal Network of Power Module
  • 6.6.3. Cooling Solutions for Power Module
  • 6.6.3.1. Air Cooling
  • 6.6.3.2. Liquid Cooling
  • 6.6.3.3. Double-Sided Cooling
  • 6.6.3.4. Double-Sided Cooling Using the DBC Structure
  • 6.6.3.5. Double-Sided Cooling Using the Press-Pack Structure
  • 6.7. Reliability of Power Modules
  • 6.7.1. Reliability Tests [17]
  • 6.7.1.1. Thermal Cycling Test
  • 6.7.1.2. Power Cycling Test
  • 6.8. Design Guidelines and Considerations
  • 6.8.1. Bypass Capacitor Considerations
  • 6.8.2. Gate Driver Design Considerations
  • 6.8.3. Gate Kelvin Contacts
  • 6.8.4. Other Design Considerations
  • References
  • Further Reading
  • Section II: Power Conversion.
  • Chapter 7: Diode Rectifiers
  • 7.1. Introduction
  • 7.2. Single-Phase Diode Rectifiers
  • 7.2.1. Single-Phase Half-Wave Rectifiers
  • 7.2.2. Single-Phase Full-Wave Rectifiers
  • 7.2.3. Performance Parameters
  • 7.2.3.1. Voltage Relationships
  • 7.2.3.2. Current Relationships
  • 7.2.3.3. Rectification Ratio
  • 7.2.3.4. Form Factor
  • 7.2.3.5. Ripple Factor
  • 7.2.3.6. Transformer Utilization Factor
  • 7.2.3.7. Harmonics
  • 7.2.4. Design Considerations
  • 7.3. Three-Phase Diode Rectifiers
  • 7.3.1. Three-Phase Star Rectifiers
  • 7.3.1.1. Basic Three-Phase Star Rectifier Circuit
  • 7.3.1.2. Three-Phase Interstar Rectifier Circuit
  • 7.3.1.3. Three-Phase Double-Star Rectifier With Interphase Transformer
  • 7.3.2. Three-Phase Bridge Rectifiers
  • 7.3.3. Operation of Rectifiers With Finite Source Inductance
  • 7.4. Poly-Phase Diode Rectifiers
  • 7.4.1. Six-Phase Star Rectifier
  • 7.4.2. Six-Phase Series Bridge Rectifier
  • 7.4.3. Six-Phase Parallel Bridge Rectifier
  • 7.5. Filtering Systems in Rectifier Circuits
  • 7.5.1. Inductive-Input DC Filters
  • 7.5.1.1. Voltage and Current Waveforms of Full-Wave Rectifier With Inductor-Input DC Filter
  • 7.5.1.2. Critical Inductance LC
  • 7.5.1.3. Determining the Input Inductance for a Given Ripple Factor
  • 7.5.1.4. Harmonics of the Input Current
  • 7.5.2. Capacitive-Input DC Filters
  • 7.5.2.1. Inrush Current
  • 7.6. High-Frequency Diode Rectifier Circuits
  • 7.6.1. Forward Rectifier Diode, Flywheel Diode, and Magnetic-Reset Clamping Diode in a Forward Converter
  • 7.6.1.1. Ideal Circuit
  • 7.6.1.2. Circuit Using Ultra-Fast Diodes
  • 7.6.1.3. Circuit Using Schottky Diodes
  • 7.6.1.4. Circuit With Practical Transformer
  • 7.6.1.5. Circuit With Snubber Across The Transformer
  • 7.6.1.6. Practical Circuit
  • 7.6.2. Flyback Rectifier Diode and Clamping Diode in a Flyback Converter
  • 7.6.2.1. Ideal Circuit.
  • 7.6.2.2. Practical Circuit.