Power electronics handbook
Power Electronics Handbook, Fourth Edition, brings together over 100 years of combined experience in the specialist areas of power engineering to offer a fully revised and updated expert guide to total power solutions. Designed to provide the best technical and most commercially viable solutions ava...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Oxford, England ; Cambridge, Massachusetts :
Butterworth-Heinemann
2018.
|
Edición: | Fourth edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630279206719 |
Tabla de Contenidos:
- Front Cover
- Power Electronics Handbook
- Copyright
- Table of Contents
- Contributors
- Chapter 1: Introduction
- 1.1. Power Electronics Defined
- 1.2. Key Characteristics
- 1.2.1. The Efficiency Objective-The Switch
- 1.2.2. The Reliability Objective-Simplicity and Integration
- 1.3. Trends in Power Supplies
- 1.4. Conversion Examples
- 1.4.1. Single-Switch Circuits
- 1.4.2. The Method of Energy Balance
- 1.5. Tools for Analysis and Design
- 1.5.1. The Switch Matrix
- 1.5.2. Implications of Kirchhoff's Voltage and Current Laws
- 1.5.3. Resolving the Hardware Problem-Semiconductor Devices
- 1.5.4. Resolving the Software Problem-Switching Functions
- 1.5.5. Resolving the Interface Problem-Lossless Filter Design
- 1.6. Sample Applications
- 1.7. Summary
- References
- Section I: Power Electronic Devices
- Chapter 2: Semiconductor Diodes and Transistors
- 2.1. Semiconductor Diode
- 2.1.1. Static Characteristics
- 2.1.2. Dynamic Characteristics
- 2.1.3. Common Types of Diodes
- 2.1.4. Evaluating the Dynamic Characteristics of Real Diodes
- 2.1.5. Series and Parallel Connection of Power Diodes
- 2.1.6. Typical Application of Diodes
- 2.1.6.1. Rectifiers
- 2.1.6.2. Freewheeling
- 2.1.6.3. Voltage Multiplier
- 2.1.7. PSPICE Model
- 2.2. Power Bipolar Transistor
- 2.2.1. Basic Structure and Operation
- 2.2.2. Static Characteristics
- 2.2.3. Safe Operation Area
- 2.2.4. Switching Characteristics
- 2.2.5. Transistor Base Driver Circuits
- 2.2.6. BJT Applications
- 2.2.7. PSPICE Model
- 2.3. Power MOSFET
- 2.3.1. Basic Structure
- 2.3.2. Static Characteristics
- 2.3.2.1. Ohmic Region
- 2.3.2.2. Cut-off Region
- 2.3.2.3. Active Region
- 2.3.3. Switching Characteristics
- 2.3.3.1. Turn-on Analysis
- 2.3.3.2. Turn-off Analysis
- 2.3.4. Safe Operation Area
- 2.3.5. MOSFET Applications.
- 2.3.6. PSPICE Model
- 2.4. Insulated Gate Bipolar Transistor
- 2.4.1. Basic Structure
- 2.4.2. Static Characteristics
- 2.4.3. Switching Characteristics
- 2.4.3.1. Turn-on Analysis
- 2.4.3.2. Turn-off Analysis
- 2.4.4. IGBT Applications
- 2.4.5. PSPICE Model
- 2.5. Swtiching evaluation of a Real MOSFET
- 2.5.1. Results for Sw1 ON and Sw2 OFF and Rpot at the Maximum Resistance
- 2.5.2. Results for Sw1 ON and Sw2 OFF and Rpot at the Minimum Resistance
- 2.5.3. Results for Sw1 and Sw2 ON and Rpot at the Maximum Resistance
- 2.5.4. Results for Sw1 and Sw2 OFF and Rpot at the Maximum Resistance
- 2.6. Heatsink Thermal Design for Power Semiconductors
- 2.6.1. Heatsink Design
- 2.7. Transistor Selection Criteria
- References
- Chapter 3: Thyristors
- 3.1. Introduction
- 3.2. Basic Structure and Operation
- 3.3. Static Characteristics
- 3.3.1. Current-Voltage Curves for Thyristors
- 3.3.2. Edge and Surface Terminations
- 3.3.3. Packaging
- 3.4. Dynamic Switching Characteristics
- 3.4.1. Cathode Shorts
- 3.4.2. Anode Shorts
- 3.4.3. Amplifying Gate
- 3.4.4. Temperature Dependencies
- 3.5. Thyristor Parameters
- 3.6. Types of Thyristors
- 3.6.1. SCRs and GTOs
- 3.6.1.1. On-State Characteristics
- 3.6.1.2. Off-State Characteristics
- 3.6.1.3. Rate of Rise of Off-State Voltage (dvD/dt)
- 3.6.1.4. Gate Triggering Characteristics
- 3.6.1.5. GTO Switching Phases
- Turn-on
- On-state
- Turn-off
- Off-state period
- 3.6.1.6. GTO SPICModel
- 3.6.2. MOS-Controlled Thyristors
- 3.6.2.1. Equivalent Circuit and Switching Characteristics
- 3.6.2.2. Turn-On and Turn-Off
- 3.6.2.3. Comparison of MCT and Other Power Devices
- 3.6.2.4. Protection of MCTs
- Paralleling of MCTs
- Overcurrent protection
- Snubbers
- Simulation model of an MCT
- 3.6.3. Generation-1 and Generation-2 MCTs
- 3.6.4. N-channel MCT.
- 3.6.5. Base Resistance-Controlled Thyristor [28]
- 3.6.6. MOS Turn-off Thyristor [29]
- 3.6.7. Static Induction Thyristors
- 3.6.8. Optically Triggered Thyristors
- 3.6.9. Bi-directional Controlled Thyristors
- 3.7. Gate Drive Requirements
- 3.7.1. Snubber Circuits
- 3.7.2. Gate Circuits
- 3.8. Applications
- 3.8.1. DC-AC Utility Inverters
- 3.8.2. Motor Control
- 3.8.3. VAR Compensators and Static Switching Systems
- 3.8.4. Lighting Control Circuits
- References
- Chapter 4: Static Induction Devices
- 4.1. Introduction
- 4.2. Theory of Static Induction Devices
- 4.3. Characteristics of SIT
- 4.4. Bipolar Mode Operation of SI devices (BSIT)
- 4.5. Emitters for Static Induction Devices
- 4.6. Static Induction Diode
- 4.7. Lateral Punch-Through Transistor
- 4.8. Static Induction Transistor Logic
- 4.9. BJT Saturation Protected by SIT
- 4.10. Static Induction MOS Transistor
- 4.11. Space Charge Limiting Load (SCLL)
- 4.12. Power MOS Transistors
- 4.13. Static Induction Thyristor
- 4.14. Gate Turn Off Thyristor
- References
- Chapter 5: SiC and GaN Power Semiconductor Devices
- 5.1. Background
- 5.2. Silicon Carbide and Gallium Nitride Materials
- 5.2.1. Silicon Carbide Polytypes
- 5.2.2. Gallium Nitride Crystal Structures
- 5.2.2.1. Silicon Carbide and Gallium Nitride Physical and Electrical Properties
- 5.2.2.2. Critical Electric Field
- 5.2.2.3. Intrinsic Carrier Concentration
- 5.2.2.4. Saturated Drift Velocity
- 5.2.2.5. Thermal Stability
- 5.2.2.6. Coefficient of Thermal Expansion
- 5.2.2.7. Figure of Merit
- FOM for materials and technology
- FOM for devices
- 5.3. SiC Power Devices
- 5.3.1. Introduction
- 5.3.2. SiC Power Diodes
- 5.3.2.1. SiC Schottky Diode
- 5.3.2.2. SiC PiN Diode
- 5.3.2.3. SiC Junction Barrier Schottky Diode
- 5.3.3. SiC MOSFET
- 5.3.4. SiC JFET
- 5.3.5. SiC BJT.
- 5.3.6. SiC IGBT
- 5.3.7. SiC Thyristor
- 5.4. GaN Power Devices
- 5.4.1. Lateral GaN Schottky Barrier Diodes
- 5.4.2. Vertical GaN PiN Diodes
- 5.4.3. GaN JFET
- 5.4.3.1. Vertical JFET
- 5.4.3.2. Lateral Channel JFET With Vertical Drift Region
- 5.4.4. GaN MOSFET
- 5.4.4.1. Vertical Trench MOSFET
- 5.4.4.2. Lateral MOSFET
- 5.4.5. GaN HEMT
- 5.4.5.1. GaN HEMT Structure
- 5.4.5.2. GaN HEMT DC Characteristics
- 5.4.5.3. GaN HEMT Design Considerations
- Appendix. Lightly Doped Drift Region Thickness
- References
- Further Reading
- Chapter 6: Power Electronic Modules
- 6.1. Introduction
- 6.2. Discrete Power Devices Versus Power Modules
- 6.3. An Example of Power Module
- 6.4. Manufacturing Process
- 6.4.1. Semiconductor Chips
- 6.4.2. Die Attach
- 6.4.3. Wire Bonds
- 6.4.4. DBC Substrate
- 6.4.5. Baseplate
- 6.5. Types of Power Electronic Modules
- 6.5.1. A Survey of Power Electronic Module Topologies
- 6.5.2. Power Semiconductor Devices Used in Power Electronic Modules
- 6.5.3. SiC Power Semiconductor Devices in Power Modules
- 6.6. Thermal Management of Power Modules
- 6.6.1. The Purpose of Thermal Management
- 6.6.2. Equivalent Thermal Network of Power Module
- 6.6.3. Cooling Solutions for Power Module
- 6.6.3.1. Air Cooling
- 6.6.3.2. Liquid Cooling
- 6.6.3.3. Double-Sided Cooling
- 6.6.3.4. Double-Sided Cooling Using the DBC Structure
- 6.6.3.5. Double-Sided Cooling Using the Press-Pack Structure
- 6.7. Reliability of Power Modules
- 6.7.1. Reliability Tests [17]
- 6.7.1.1. Thermal Cycling Test
- 6.7.1.2. Power Cycling Test
- 6.8. Design Guidelines and Considerations
- 6.8.1. Bypass Capacitor Considerations
- 6.8.2. Gate Driver Design Considerations
- 6.8.3. Gate Kelvin Contacts
- 6.8.4. Other Design Considerations
- References
- Further Reading
- Section II: Power Conversion.
- Chapter 7: Diode Rectifiers
- 7.1. Introduction
- 7.2. Single-Phase Diode Rectifiers
- 7.2.1. Single-Phase Half-Wave Rectifiers
- 7.2.2. Single-Phase Full-Wave Rectifiers
- 7.2.3. Performance Parameters
- 7.2.3.1. Voltage Relationships
- 7.2.3.2. Current Relationships
- 7.2.3.3. Rectification Ratio
- 7.2.3.4. Form Factor
- 7.2.3.5. Ripple Factor
- 7.2.3.6. Transformer Utilization Factor
- 7.2.3.7. Harmonics
- 7.2.4. Design Considerations
- 7.3. Three-Phase Diode Rectifiers
- 7.3.1. Three-Phase Star Rectifiers
- 7.3.1.1. Basic Three-Phase Star Rectifier Circuit
- 7.3.1.2. Three-Phase Interstar Rectifier Circuit
- 7.3.1.3. Three-Phase Double-Star Rectifier With Interphase Transformer
- 7.3.2. Three-Phase Bridge Rectifiers
- 7.3.3. Operation of Rectifiers With Finite Source Inductance
- 7.4. Poly-Phase Diode Rectifiers
- 7.4.1. Six-Phase Star Rectifier
- 7.4.2. Six-Phase Series Bridge Rectifier
- 7.4.3. Six-Phase Parallel Bridge Rectifier
- 7.5. Filtering Systems in Rectifier Circuits
- 7.5.1. Inductive-Input DC Filters
- 7.5.1.1. Voltage and Current Waveforms of Full-Wave Rectifier With Inductor-Input DC Filter
- 7.5.1.2. Critical Inductance LC
- 7.5.1.3. Determining the Input Inductance for a Given Ripple Factor
- 7.5.1.4. Harmonics of the Input Current
- 7.5.2. Capacitive-Input DC Filters
- 7.5.2.1. Inrush Current
- 7.6. High-Frequency Diode Rectifier Circuits
- 7.6.1. Forward Rectifier Diode, Flywheel Diode, and Magnetic-Reset Clamping Diode in a Forward Converter
- 7.6.1.1. Ideal Circuit
- 7.6.1.2. Circuit Using Ultra-Fast Diodes
- 7.6.1.3. Circuit Using Schottky Diodes
- 7.6.1.4. Circuit With Practical Transformer
- 7.6.1.5. Circuit With Snubber Across The Transformer
- 7.6.1.6. Practical Circuit
- 7.6.2. Flyback Rectifier Diode and Clamping Diode in a Flyback Converter
- 7.6.2.1. Ideal Circuit.
- 7.6.2.2. Practical Circuit.