Handbook of silicon based MEMS materials and technologies

A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: Silicon as MEMS materialMaterial properties and measurement techniquesAnalytical methods used in mat...

Descripción completa

Detalles Bibliográficos
Otros Autores: Lindroos, Veikko (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam ; Boston : William Andrew/Elsevier 2010.
Edición:1st ed
Colección:Micro & nano technologies.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629689606719
Tabla de Contenidos:
  • Front Cover
  • Handbook of Silicon Based MEMS Materials and Technologies
  • Copyright Page
  • Contents
  • Preface
  • List of Contributors
  • Overview
  • Impact of Silicon MEMS-30 years after
  • Introduction
  • Towards Mass Volumes of MEMS Devices
  • Ink Jet Printer Nozzles Create the Industry
  • Automotive Applications Drive the Reliability and the Quality
  • Leaps Towards a Generic Manufacturing Platform
  • Towards Every Pocket
  • Mobile Phones and Mobile Multimedia Computers
  • Ubiquitous Sensing, Computing and Communication
  • Future of MEMS Technologies
  • Conclusions
  • Acknowledgements
  • References
  • PART I: Silicon as MEMS Material
  • Chapter 1 Properties of Silicon
  • 1.1 Properties of Silicon
  • References
  • Chapter 2 Czochralski Growth of Silicon Crystals
  • 2.1 The CZ Crystal-Growing Furnace
  • 2.2 Stages of Growth Process
  • 2.3 Issues of Crystal Growth
  • 2.4 Improved Thermal and Gas Flow Designs
  • 2.5 Heat Transfer
  • 2.6 Melt Convection
  • 2.7 Magnetic Fields
  • 2.8 Hot Recharging
  • References
  • Further reading
  • Chapter 3 Properties of Silicon Crystals
  • 3.1 Dopants and Impurities
  • 3.2 Typical Impurity Concentrations
  • 3.3 Concentration of Dopants and Impurities in Axial Direction
  • 3.4 Resistivity
  • 3.5 Radial Variation of Impurities and Resistivity
  • 3.6 Thermal Donors
  • 3.7 Defects in Silicon Crystals
  • 3.8 Control of Vacancies, Interstitials, and the OISF Ring
  • 3.9 Conclusion
  • Acknowledgments
  • References
  • Chapter 4 Oxygen in Silicon
  • 4.1 Oxygen in Solid Solution
  • 4.2 Formation of Small Oxygen Aggregates
  • 4.3 Precipitation of Oxygen
  • 4.4 Precipitate-Induced Defects
  • 4.5 Behavior of Oxygen in Basic Heat Treatment Procedures
  • References
  • Chapter 5 Silicon Wafers: Preparation and Properties
  • 5.1 Silicon Wafer Manufacturing Process
  • 5.2 Standard Measurements of Polished Wafers.
  • 5.3 Sample Specifications of MEMS Wafers
  • 5.4 Standards of Silicon Wafers
  • References
  • Chapter 6 Epi Wafers: Preparation and Properties
  • 6.1 Silicon Epitaxy-The Basics
  • 6.2 The Epi-Poly Process
  • 6.3 Etch Stop Layers
  • 6.4 Epi on SOI Substrates
  • 6.5 Selective Epitaxy and Epitaxial Layer Overgrowth
  • 6.6 Metrology
  • 6.7 Commercially Available Epitaxy Systems
  • 6.8 Summary
  • References
  • Chapter 7 Thick-Film SOI Wafers: Preparation and Properties
  • 7.1 Introduction
  • 7.2 Overview of SOI
  • 7.3 Silicon Wafer Parameters for Direct Bonding
  • 7.4 Fabrication of Thick-Film BSOI by Mechanical Grinding and Polishing
  • 7.5 BESOI Process
  • 7.6 Techniques Based on Thin-Film SOI and Silicon Epitaxy
  • 7.7 Conclusion
  • References
  • Chapter 8 Silicon Dioxides
  • 8.1 Introduction
  • 8.2 Growth Methods of Silicon Dioxide
  • 8.3 Structure and Properties of Silicon Dioxides
  • 8.4 Processing of Silicon Dioxides
  • References
  • PART II: Modeling in MEMS Methods
  • Chapter 9 Multiscale Modeling
  • 9.1 Microscopic and Macroscopic Equations
  • 9.2 Computational Methods
  • References
  • Chapter 10 Manufacture and Processing of MEMS Structures
  • 10.1 Introduction
  • 10.2 Requirements for Modeling Micromachining
  • 10.3 Micromachining As a Front Propagation Problem
  • 10.4 Anisotropic Etching: Geometrical Simulators
  • 10.5 Anisotropic Etching: Atomistic Simulators
  • 10.6 A Survey of Etching Simulators
  • References
  • Chapter 11 Mechanical Properties of Silicon Microstructures
  • 11.1 Basic Structural Properties of Crystalline Silicon
  • 11.2 Dislocations in Silicon
  • 11.3 Physical Mechanisms of Fracture in Silicon
  • 11.4 Physical Mechanisms of Fatigue of Silicon
  • References
  • Additional References
  • Chapter 12 Electrostatic and RF-Properties of MEMS Structures
  • 12.1 Introduction
  • 12.2 Model System for a Dynamic Micromechanical Device.
  • 12.3 Electrical Equivalent Circuit
  • 12.4 Electrostatic Force
  • 12.5 Electromechanical Coupling
  • 12.6 Sensing of Motion
  • 12.7 Pull-in Phenomenon
  • 12.8 Parasitic Capacitance
  • 12.9 Effect of Built-in Potential on Capacitively Coupled MEMS-Devices
  • 12.10 Further Effects of Electrostatic Nonlinearities from Applications Point of View
  • 12.11 RF-Properties
  • Acknowledgments
  • References
  • Chapter 13 Optical Modeling of MEMS
  • 13.1 Optical Properties of Silicon and Related Materials
  • 13.2. Theoretical Background
  • 13.3 Numerical Modeling Methods for Optical MEMS
  • References
  • Chapter 14 Gas Damping in Vibrating MEMS Structures
  • 14.1 Introduction
  • 14.2 Damping Dominated by Gas Viscosity
  • 14.3 First-Order Frequency Dependencies
  • 14.4 Viscoacoustic Models
  • 14.5 Simulation Tools
  • References
  • PART III: Measuring MEMS
  • Chapter 15 Introduction to Measuring MEMS
  • 15.1 On MEMS Measurements
  • 15.2 Variation and Mapping
  • 15.3 MEMS Measurement Challenges
  • References
  • Chapter 16 Silicon Wafer and Thin Film Measurements
  • 16.1 Important Measurements
  • 16.2 Wafer Shape
  • 16.3 Resistivity
  • 16.4 Thickness of Thin Films
  • References
  • Chapter 17 Optical Measurement of Static and Dynamic Displacement in MEMS
  • 17.1 Camera-Based Measurements
  • References
  • Chapter 18 MEMS Residual Stress Characterization: Methodology and Perspective
  • 18.1 Introduction
  • 18.2 MEMS residual stress characterization techniques
  • 18.3 Perspective and Conclusion
  • References
  • Chapter 19 Strength of Bonded Interfaces
  • 19.1 Solid Mechanics
  • 19.2 Double Cantilever Beam Test Method
  • 19.3 Tensile Test Method
  • 19.4 Blister Test Method
  • 19.5 Chevron Test Structures
  • 19.6 Summary and Outlook
  • References
  • Chapter 20 Focused Ion and Electron Beam Techniques
  • 20.1 Brief Introduction to DualBeam Instrumentation.
  • 20.2 FIB for Direct Milling and Deposition of Structures
  • 20.3 SEM for Direct Deposition or Lithography of Structures
  • 20.4 DualBeam Applications of FA and Characterization of MEMS Devices
  • Reference
  • Chapter 21 Oxygen and Bulk Microdefects in Silicon
  • 21.1 Measuring Oxygen in Silicon
  • 21.2 Measuring Bulk Microdefects
  • References
  • PART IV: Micromachining Technologies in MEMS
  • Chapter 22 MEMS Lithography
  • 22.1 Lithography Considerations Before Wafer Processing
  • 22.2 Wafers in Lithography Process
  • 22.3 Processing After Lithography
  • 22.4 Thick Photoresist Lithography
  • References
  • Chapter 23 Deep Reactive Ion Etching
  • 23.1 Etch Chemistries
  • 23.2 Equipment
  • 23.3 DRIE Processes
  • 23.4 DRIE Advanced Issues and Challenges
  • 23.5 DRIE Applications
  • 23.6 Post-DRIE Etch Treatments
  • 23.7 Choosing between Wet and Dry Etching
  • References
  • Chapter 24 Wet Etching of Silicon
  • 24.1 Basic Description of Anisotropic Etching: Faceting
  • 24.2 Beyond Faceting: Atomistic Phenomena
  • 24.3 Beyond Atomistics: Electrochemistry
  • 24.4 Typical Surface Morphologies (I. Zubel and M.A. Gosálvez)
  • 24.5 Effects from Silicon Wafer Features (E. Viinikka)
  • 24.6 Convex Corner Undercutting
  • 24.7 Examples of Wet Etching
  • 24.8 Popular Wet Etchants
  • 24.9 Temperature Dependence of the Etch Rate
  • 24.10. Concentration Dependence of the Etch Rate
  • 24.11 Other Variables Affecting the Etch-Rate Values
  • 24.12 Experimental Determination of Etch Rates
  • 24.13 Converting Between Different Measures of Concentration
  • References
  • Chapter 25 Porous Silicon Based MEMS
  • 25.1 Porous Silicon Background
  • 25.2 PS Sacrificial Layer Technologies
  • 25.3 PS Fabrication Technology
  • 25.4 Microscopic Processes Underlying PS Formation
  • 25.5 Formation of Silicon Microstructures
  • 25.6 Application Examples
  • 25.7 Summary and Conclusions.
  • References
  • Chapter 26 Atomic Layer Deposition in MEMS Technology
  • 26.1 Atomic Layer Deposition: An Introduction
  • 26.2 Operation Principles of ALD
  • 26.3 ALD Processes
  • 26.4 Characteristics of ALD Processes and Films
  • 26.5 ALD Reactors
  • 26.6 Applications for ALD in MEMS
  • 26.7 Outlook
  • References
  • Chapter 27 Metallic Glass
  • 27.1 Introduction
  • 27.2 Glassy/Amorphous Metals
  • 27.3 Properties of Metallic Glasses
  • 27.4 Microfabrication Ability of BMGs
  • 27.5 Nanoforming Ability of Glassy Metals (Below 100 nm)
  • 27.6 Applications of BMGs in MEMS
  • 27.7 Metallic Glass Thin Films: A Pathway to Integrated MEMS
  • 27.8 Micro/Nanofabrication Ability of Glassy Thin Films
  • References
  • Chapter 28 Surface Micromachining
  • 28.1 Polycrystalline Silicon-Based Micromachining
  • 28.2 Integration Concepts
  • 28.3 Metallic MEMS
  • 28.4 SOI-Wafer-Based Surface Micromachining
  • References
  • Chapter 29 Silicon Based BioMEMS: Micromachining Technologies
  • 29.1 Introduction to Silicon Based BioMEMS Devices
  • 29.2 Silicon BioMEMS for Health Care
  • 29.3 Silicon BioMEMS for Biological Detection
  • 29.4 Conclusions and Future Research Areas
  • References
  • PART V: Encapsulation of MEMS Components
  • Chapter 30 Introduction to Encapsulation of MEMS
  • 30.1 Early Work on Bulk-MEMS Devices
  • 30.2 Encapsulation in Surface Micromachining
  • 30.3 Protection of the MEMS Device
  • 30.4 Controlled Atmosphere
  • 30.5 Structural Functions
  • 30.6 Wafer Bonding Methods
  • 30.7 Sealing by Film Deposition
  • 30.8 Via Technologies
  • References
  • Chapter 31 Silicon Direct Bonding
  • 31.1 Hydrophilic High-Temperature Wafer Bonding
  • 31.2 Hydrophobic High-Temperature Bonding of Silicon
  • 31.3 Low-Temperature Direct Bonding of Silicon
  • 31.4 Direct Bonding of CVD Oxides
  • 31.5 Direct Bonding of CVD Silicon
  • References
  • Chapter 32 Anodic Bonding.
  • 32.1 Introduction.