Sparse modeling theory, algorithms, and applications

Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing.Sparse Modeling: Theory, Algor...

Descripción completa

Detalles Bibliográficos
Otros Autores: Rish, Irina, 1969, author (author), Grabarnik, Genady Ya., contributor (contributor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press 2015.
Edición:1st edition
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628759506719
Tabla de Contenidos:
  • Cover; Contents; List of Figures; Preface; Chapter 1: Introduction; Chapter 2: Sparse Recovery: Problem Formulations; Chapter 3: Theoretical Results (Deterministic Part); Chapter 4: Theoretical Results (Probabilistic Part); Chapter 5: Algorithms for Sparse Recovery Problems; Chapter 6: Beyond LASSO: Structured Sparsity; Chapter 7: Beyond LASSO: Other Loss Functions; Chapter 8: Sparse Graphical Models; Chapter 9: Sparse Matrix Factorization: Dictionary Learning and Beyond; Epilogue; Appendix: Mathematical Background; Bibliography; Color Inserts; Back Cover