Sparse modeling theory, algorithms, and applications

Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing.Sparse Modeling: Theory, Algor...

Descripción completa

Detalles Bibliográficos
Otros Autores: Rish, Irina, 1969, author (author), Grabarnik, Genady Ya., contributor (contributor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press 2015.
Edición:1st edition
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628759506719
Descripción
Sumario:Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing.Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the l
Notas:A Chapman and Hall book.
Descripción Física:1 online resource (250 p.)
Bibliografía:Includes bibliographical references.
ISBN:9780429151996
9781439828700