Cost-sensitive machine learning

In machine learning applications, practitioners must take into account the cost associated with the algorithm. These costs include: Cost of acquiring training dataCost of data annotation/labeling and cleaningComputational cost for model fitting, validation, and testingCost of collecting features/att...

Descripción completa

Detalles Bibliográficos
Otros Autores: Krishnapuram, Balaji (-), Yu, Shipeng, Rao, Bharat
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, Fla. : CRC Press c2012.
Boca Raton, Fla. : 2012.
Edición:1st edition
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628717406719
Descripción
Sumario:In machine learning applications, practitioners must take into account the cost associated with the algorithm. These costs include: Cost of acquiring training dataCost of data annotation/labeling and cleaningComputational cost for model fitting, validation, and testingCost of collecting features/attributes for test dataCost of user feedback collectionCost of incorrect prediction/classificationCost-Sensitive Machine Learning is one of the first books to provide an overview of the current research efforts and problems in this area. It discusses real-world applications that incorporate the cost o
Notas:"A Chapman & Hall book."
Descripción Física:1 online resource (316 p.)
Bibliografía:Includes bibliographical references.
ISBN:9780429106507
9781439839287