Topological and Bivariant K-Theory
Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological a...
Autores principales: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Basel :
Birkhäuser Basel
2007.
|
Edición: | 1st ed. 2007. |
Colección: | Oberwolfach Seminars,
36 |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009462058306719 |
Tabla de Contenidos:
- The elementary algebra of K-theory
- Functional calculus and topological K-theory
- Homotopy invariance of stabilised algebraic K-theory
- Bott periodicity
- The K-theory of crossed products
- Towards bivariant K-theory: how to classify extensions
- Bivariant K-theory for bornological algebras
- A survey of bivariant K-theories
- Algebras of continuous trace, twisted K-theory
- Crossed products by ? and Connes’ Thom Isomorphism
- Applications to physics
- Some connections with index theory
- Localisation of triangulated categories.