Topological and Bivariant K-Theory

Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuntz, Joachim. author (author), Rosenberg, Jonathan M. author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel 2007.
Edición:1st ed. 2007.
Colección:Oberwolfach Seminars, 36
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009462058306719
Tabla de Contenidos:
  • The elementary algebra of K-theory
  • Functional calculus and topological K-theory
  • Homotopy invariance of stabilised algebraic K-theory
  • Bott periodicity
  • The K-theory of crossed products
  • Towards bivariant K-theory: how to classify extensions
  • Bivariant K-theory for bornological algebras
  • A survey of bivariant K-theories
  • Algebras of continuous trace, twisted K-theory
  • Crossed products by ? and Connes’ Thom Isomorphism
  • Applications to physics
  • Some connections with index theory
  • Localisation of triangulated categories.