Topological and Bivariant K-Theory

Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuntz, Joachim. author (author), Rosenberg, Jonathan M. author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel 2007.
Edición:1st ed. 2007.
Colección:Oberwolfach Seminars, 36
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009462058306719
Descripción
Sumario:Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, we discuss other approaches to bivariant K-theories for operator algebras. As applications, we study K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.
Notas:Description based upon print version of record.
Descripción Física:1 online resource (267 p.)
Bibliografía:Includes bibliographical references and index.
ISBN:9783764383992