Objektsensitive Verfolgung und Klassifikation von Fußgängern mit verteilten Multi-Sensor-Trägern
State estimation of an unknown number of objects remains a challenging topic - despite the existence of theoretically bayes-optimal multi-object-filters - due to numerous assumptions in the modeling process. This thesis evaluates such filters in real multi-object-multi-sensor scenarios and proposes...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Alemán |
Publicado: |
KIT Scientific Publishing
2016
|
Colección: | Forschungsberichte aus der Industriellen Informationstechnik / Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009429734806719 |
Sumario: | State estimation of an unknown number of objects remains a challenging topic - despite the existence of theoretically bayes-optimal multi-object-filters - due to numerous assumptions in the modeling process. This thesis evaluates such filters in real multi-object-multi-sensor scenarios and proposes necessary extensions to existing models. The main application of the thesis is indoor pedestrian tracking. |
---|---|
Descripción Física: | 1 electronic resource (XI, 178 p. p.) |