Learning Dynamic Systems for Intention Recognition in Human-Robot-Cooperation

This thesis is concerned with intention recognition for a humanoid robot and investigates how the challenges of uncertain and incomplete observations, a high degree of detail of the used models, and real-time inference may be addressed by modeling the human rationale as hybrid, dynamic Bayesian netw...

Descripción completa

Detalles Bibliográficos
Otros Autores: Krauthausen, Peter (auth)
Formato: Libro electrónico
Idioma:Inglés
Publicado: KIT Scientific Publishing 2013
Colección:Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009427394506719
Descripción
Sumario:This thesis is concerned with intention recognition for a humanoid robot and investigates how the challenges of uncertain and incomplete observations, a high degree of detail of the used models, and real-time inference may be addressed by modeling the human rationale as hybrid, dynamic Bayesian networks and performing inference with these models. The key focus lies on the automatic identification of the employed nonlinear stochastic dependencies and the situation-specific inference.
Descripción Física:1 electronic resource (XIV, 210 p. p.)