Nonlinear state and parameter estimation of spatially distributed systems

In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for id...

Descripción completa

Detalles Bibliográficos
Otros Autores: Sawo, Felix (auth)
Formato: Libro electrónico
Idioma:Inglés
Publicado: KIT Scientific Publishing 2009
Colección:Karlsruhe Series on Intelligent Sensor-Actuator-Systems, Universität Karlsruhe / Intelligent Sensor-Actuator-Systems Laboratory
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009424832706719
Descripción
Sumario:In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.
Descripción Física:1 electronic resource (XI, 153 p. p.)