Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Development 532
- Application software 520
- Engineering & Applied Sciences 276
- Computer Science 239
- Programming 184
- Computer programming 170
- Web site development 164
- Computer programs 142
- Python (Computer program language) 136
- Java (Computer program language) 126
- JavaScript (Computer program language) 121
- Computer software 120
- Microsoft .NET Framework 114
- Design 110
- Operating systems (Computers) 106
- Web sites 101
- Internet programming 96
- Cloud computing 89
- Linux 81
- Web applications 81
- Android (Electronic resource) 78
- Programming languages (Electronic computers) 77
- Debugging in computer science 76
- Open source software 76
- Computer networks 74
- Software engineering 74
- Mobile computing 72
- Database management 69
- iOS (Electronic resource) 69
- Management 67
-
41Publicado 2023Tabla de Contenidos: “…Cover -- Title Page -- Copyright -- Dedication -- Foreword -- Contributors -- Table of Contents -- Preface -- Part 1: Debugging for Machine Learning Modeling -- Chapter 1: Beyond Code Debugging -- Technical requirements -- Machine learning at a glance -- Types of machine learning modeling -- Supervised learning -- Unsupervised learning -- Self-supervised learning -- Semi-supervised learning -- Reinforcement learning -- Generative machine learning -- Debugging in software development -- Error messages in Python -- Debugging techniques -- Debuggers -- Best practices for high-quality Python programming -- Version control -- Debugging beyond Python -- Flaws in data used for modeling -- Data format and structure -- Data quantity and quality -- Data biases -- Model and prediction-centric debugging -- Underfitting and overfitting -- Inference in model testing and production -- Data or hyperparameters for changing landscapes -- Summary -- Questions -- References -- Chapter 2: Machine Learning Life Cycle -- Technical requirements -- Before we start modeling -- Data collection -- Data selection -- Data exploration -- Data wrangling -- Structuring -- Enriching -- Data transformation -- Cleaning -- Modeling data preparation -- Feature selection and extraction -- Designing an evaluation and testing strategy -- Model training and evaluation -- Testing the code and the model -- Model deployment and monitoring -- Summary -- Questions -- References -- Chapter 3: Debugging toward Responsible AI -- Technical requirements -- Impartial modeling fairness in machine learning -- Data bias -- Algorithmic bias -- Security and privacy in machine learning -- Data privacy -- Data poisoning -- Adversarial attacks -- Output integrity attacks -- System manipulation -- Secure and private machine learning techniques -- Transparency in machine learning modeling…”
Libro electrónico -
42
-
43
-
44
-
45
-
46
-
47
-
48
Libro electrónico -
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60