Mostrando 41 - 60 Resultados de 71 Para Buscar 'Tensor métrico~', tiempo de consulta: 1.51s Limitar resultados
  1. 41
    Publicado 2024
    Tabla de Contenidos: “…Evaluating classification performance -- Tuning models with cross-validation -- Summary -- Exercises -- References -- Chapter 3: Predicting Online Ad Click-Through with Tree-Based Algorithms -- A brief overview of ad click-through prediction -- Getting started with two types of data - numerical and categorical -- Exploring a decision tree from the root to the leaves -- Constructing a decision tree -- The metrics for measuring a split -- Gini Impurity -- Information gain -- Implementing a decision tree from scratch -- Implementing a decision tree with scikit-learn -- Predicting ad click-through with a decision tree -- Ensembling decision trees - random forests -- Ensembling decision trees - gradient-boosted trees -- Summary -- Exercises -- Chapter 4: Predicting Online Ad Click-Through with Logistic Regression -- Converting categorical features to numerical - one-hot encoding and ordinal encoding -- Classifying data with logistic regression -- Getting started with the logistic function -- Jumping from the logistic function to logistic regression -- Training a logistic regression model -- Training a logistic regression model using gradient descent -- Predicting ad click-through with logistic regression using gradient descent -- Training a logistic regression model using stochastic gradient descent (SGD) -- Training a logistic regression model with regularization -- Feature selection using L1 regularization -- Feature selection using random forest -- Training on large datasets with online learning -- Handling multiclass classification -- Implementing logistic regression using TensorFlow -- Summary -- Exercises -- Chapter 5: Predicting Stock Prices with Regression Algorithms -- What is regression? …”
    Libro electrónico
  2. 42
    por Webber, Emily
    Publicado 2023
    Tabla de Contenidos: “…References -- Chapter 9: Advanced Training Concepts -- Evaluating and improving throughput -- Calculating model TFLOPS -- Using Flash Attention to speed up your training runs -- Speeding up your jobs with compilation -- Integrating compilation into your PyTorch scripts -- Amazon SageMaker Training Compiler and Neo -- Best practices for compilation -- Running compiled models on Amazon's Trainium and Inferentia custom hardware -- Solving for an optimal training time -- Summary -- References -- Part 4: Evaluate Your Model -- Chapter 10: Fine-Tuning and Evaluating -- Fine-tuning for language, text, and everything in between -- Fine-tuning a language-only model -- Fine-tuning vision-only models -- Fine-tuning vision-language models -- Evaluating foundation models -- Model evaluation metrics for vision -- Model evaluation metrics in language -- Model evaluation metrics in joint vision-language tasks -- Incorporating the human perspective with labeling through SageMaker Ground Truth -- Reinforcement learning from human feedback -- Summary -- References -- Chapter 11: Detecting, Mitigating, and Monitoring Bias -- Detecting bias in ML models -- Detecting bias in large vision and language models -- Mitigating bias in vision and language models -- Bias mitigation in language - counterfactual data augmentation and fair loss functions -- Bias mitigation in vision - reducing correlation dependencies and solving sampling issues -- Monitoring bias in ML models -- Detecting, mitigating, and monitoring bias with SageMaker Clarify -- Summary -- References -- Chapter 12: How to Deploy Your Model -- What is model deployment? …”
    Libro electrónico
  3. 43
    Publicado 2017
    Tabla de Contenidos: “…Alternating least squares with Apache Spark MLlib -- References -- Summary -- Chapter 12: Introduction to Natural Language Processing -- NLTK and built-in corpora -- Corpora examples -- The bag-of-words strategy -- Tokenizing -- Sentence tokenizing -- Word tokenizing -- Stopword removal -- Language detection -- Stemming -- Vectorizing -- Count vectorizing -- N-grams -- Tf-idf vectorizing -- A sample text classifier based on the Reuters corpus -- References -- Summary -- Chapter 13: Topic Modeling and Sentiment Analysis in NLP -- Topic modeling -- Latent semantic analysis -- Probabilistic latent semantic analysis -- Latent Dirichlet Allocation -- Sentiment analysis -- VADER sentiment analysis with NLTK -- References -- Summary -- Chapter 14: A Brief Introduction to Deep Learning and TensorFlow -- Deep learning at a glance -- Artificial neural networks -- Deep architectures -- Fully connected layers -- Convolutional layers -- Dropout layers -- Recurrent neural networks -- A brief introduction to TensorFlow -- Computing gradients -- Logistic regression -- Classification with a multi-layer perceptron -- Image convolution -- A quick glimpse inside Keras -- References -- Summary -- Chapter 15: Creating a Machine Learning Architecture -- Machine learning architectures -- Data collection -- Normalization -- Dimensionality reduction -- Data augmentation -- Data conversion -- Modeling/Grid search/Cross-validation -- Visualization -- scikit-learn tools for machine learning architectures -- Pipelines -- Feature unions -- References -- Summary -- Index…”
    Libro electrónico
  4. 44
    Publicado 2018
    Tabla de Contenidos: “…† Reprinted from: Mathematics 2018, 6, 146, doi: 10.3390/math6090146 1 -- Krassimir Atanassov On the Most Extended Modal Operator of First Type over Interval-Valued Intuitionistic Fuzzy Sets Reprinted from: Mathematics 2018, 6, 123, doi: 10.3390/math6070123 25 -- Young Bae Jun, Seok-Zun Song and Seon Jeong Kim N -Hyper Sets Reprinted from: Mathematics 2018, 6, 87, doi: 10.3390/math6060087 . 35 -- Muhammad Akram and Gulfam Shahzadi Hypergraphs in m-Polar Fuzzy Environment Reprinted from: Mathematics 2018, 6, 28, doi: 10.3390/math6020028 . 47 -- Noor Rehman, Choonkil Park, Syed Inayat Ali Shah and Abbas Ali On Generalized Roughness in LA-Semigroups Reprinted from: Mathematics 2018, 6, 112, doi: 10.3390/math6070112 65 -- Hsien-Chung Wu Fuzzy Semi-Metric Spaces Reprinted from: Mathematics 2018, 6, 106, doi: 10.3390/math6070106 73 -- E. …”
    Libro electrónico
  5. 45
    Publicado 2024
    Tabla de Contenidos: “…5.4 Instruction optimization -- 5.4.1 Device intrinsics -- 5.4.1.1 Directed rounding -- 5.4.1.2 C intrinsics -- 5.4.1.3 Fast math intrinsics -- 5.4.1.4 Compiler options -- 5.4.2 Divergent warps -- 6 Porting tips and techniques -- 6.1 CUF kernels -- 6.2 Conditional inclusion of code -- 6.3 Renaming variables -- 6.3.1 Renaming via use statements -- 6.3.2 Renaming via the associate construct -- 6.4 Minimizing memory footprint for work arrays -- 6.5 Array compaction -- 7 Interfacing with CUDA C code and CUDA libraries -- 7.1 Calling user-written CUDA C code -- 7.1.1 The ignore"80"137tkr directive -- 7.2 cuBLAS -- 7.2.1 Legacy cuBLAS API -- 7.2.2 New cuBLAS API -- 7.2.3 Batched cuBLAS routines -- 7.2.4 GEMM with tensor cores -- 7.3 cuSPARSE -- 7.4 cuSOLVER -- 7.5 cuTENSOR -- 7.5.1 Low-level cuTENSOR interfaces -- 7.6 Thrust -- 8 Multi-GPU programming -- 8.1 CUDA multi-GPU features -- 8.1.1 Peer-to-peer communication -- 8.1.1.1 Requirements for peer-to-peer communication -- 8.1.2 Peer-to-peer direct transfers -- 8.1.3 Peer-to-peer transpose -- 8.2 Multi-GPU programming with MPI -- 8.2.1 Assigning devices to MPI ranks -- 8.2.2 MPI transpose -- 8.2.3 GPU-aware MPI transpose -- 2 Case studies -- 9 Monte Carlo method -- 9.1 CURAND -- 9.2 Computing π with CUF kernels -- 9.2.1 IEEE-754 precision -- 9.3 Computing π with reduction kernels -- 9.3.1 Reductions with SHFL instructions -- 9.3.2 Reductions with atomic locks -- 9.3.3 Reductions using the grid"80"137group cooperative group -- 9.4 Accuracy of summation -- 9.5 Option pricing -- 10 Finite difference method -- 10.1 Nine-point 1D finite difference stencil -- 10.1.1 Data reuse and shared memory -- 10.1.2 The x-derivative kernel -- 10.1.2.1 Performance of the x-derivative kernel -- 10.1.3 Derivatives in y and z -- 10.1.4 Nonuniform grids -- 10.2 2D Laplace equation…”
    Libro electrónico
  6. 46
    Publicado 2022
    “…There is also an introductory lesson included on Deep Neural Networks with a worked-out example on image classification using TensorFlow and Keras. By the end of the course, you will learn some basic foundations of data science using Python. …”
    Video
  7. 47
    Publicado 2024
    Tabla de Contenidos: “…Evolving language models - the AR Transformer and its role in GenAI -- Implementing the original Transformer -- Data loading and preparation -- Tokenization -- Data tensorization -- Dataset creation -- Embeddings layer -- Positional encoding -- Multi-head self-attention -- FFN -- Encoder layer -- Encoder -- Decoder layer -- Decoder -- Complete transformer -- Training function -- Translation function -- Main execution -- Summary -- References -- Chapter 4: Applying Pretrained Generative Models: From Prototype to Production -- Prototyping environments -- Transitioning to production -- Mapping features to production setup -- Setting up a production-ready environment -- Local development setup -- Visual Studio Code -- Project initialization -- Docker setup -- Requirements file -- Application code -- Creating a code repository -- CI/CD setup -- Model selection - choosing the right pretrained generative model -- Meeting project objectives -- Model size and computational complexity -- Benchmarking -- Updating the prototyping environment -- GPU configuration -- Loading pretrained models with LangChain -- Setting up testing data -- Quantitative metrics evaluation -- Alignment with CLIP -- Interpreting outcomes -- Responsible AI considerations -- Addressing and mitigating biases -- Transparency and explainability -- Final deployment -- Testing and monitoring -- Maintenance and reliability -- Summary -- Part 2: Practical Applications of Generative AI -- Chapter 5: Fine-Tuning Generative Models for Specific Tasks -- Foundation and relevance - an introduction to fine-tuning -- PEFT -- LoRA -- AdaLoRA -- In-context learning -- Fine-tuning versus in-context learning -- Practice project: Fine-tuning for Q&amp -- A using PEFT -- Background regarding question-answering fine-tuning -- Implementation in Python -- Evaluation of results -- Summary -- References…”
    Libro electrónico
  8. 48
    Publicado 2017
    Tabla de Contenidos: “…-- Supervised learning -- Unsupervised learning -- Reinforcement learning -- Training and testing the model -- The data cycle -- Evaluation metrics -- Confusion matrix -- True Positive Rate -- True Negative Rate -- Accuracy -- Precision and recall -- F-score -- Receiver Operating Characteristic curve -- Learning in neural networks -- Back to backpropagation -- Neural network learning algorithm optimization -- Supervised learning in neural networks -- Boston dataset -- Neural network regression with the Boston dataset -- Unsupervised learning in neural networks&amp…”
    Libro electrónico
  9. 49
    Publicado 2017
    Tabla de Contenidos: “…-- Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn Estimators -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing -- Standard pre-processing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees -- Loading the dataset -- Collecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? …”
    Libro electrónico
  10. 50
    Publicado 2018
    “…You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. …”
    Libro electrónico
  11. 51
    Publicado 2021
    “…You’ll also learn to identify and measure the metrics that tell how well your classifier is doing. …”
    Libro electrónico
  12. 52
    Publicado 2018
    Tabla de Contenidos: “…Chapter 15: Introducing Neural Networks -- Deep learning at a glance -- Artificial neural networks -- MLPs with Keras -- Interfacing Keras to scikit-learn -- Summary -- Chapter 16: Advanced Deep Learning Models -- Deep model layers -- Fully connected layers -- Convolutional layers -- Dropout layers -- Batch normalization layers -- Recurrent Neural Networks -- An example of a deep convolutional network with Keras -- An example of an LSTM network with Keras -- A brief introduction to TensorFlow -- Computing gradients -- Logistic regression -- Classification with a multilayer perceptron -- Image convolution -- Summary -- Chapter 17: Creating a Machine Learning Architecture -- Machine learning architectures -- Data collection -- Normalization and regularization -- Dimensionality reduction -- Data augmentation -- Data conversion -- Modeling/grid search/cross-validation -- Visualization -- GPU support -- A brief introduction to distributed architectures -- Scikit-learn tools for machine learning architectures -- Pipelines -- Feature unions -- Summary -- Other Books You May Enjoy -- Index…”
    Libro electrónico
  13. 53
    Publicado 2024
    Tabla de Contenidos: “…Working with DistilBERT for knowledge distillation -- Pruning transformers -- Quantization -- Working with efficient self-attention -- Sparse attention with fixed patterns -- Learnable patterns -- Low-rank factorization, kernel methods, and other approaches -- Easier quantization using bitsandbytes -- Summary -- References -- Chapter 13: Cross-Lingual and Multilingual Language Modeling -- Technical requirements -- Translation language modeling and cross-lingual knowledge sharing -- XLM and mBERT -- mBERT -- XLM -- Cross-lingual similarity tasks -- Cross-lingual text similarity -- Visualizing cross-lingual textual similarity -- Cross-lingual classification -- Cross-lingual zero-shot learning -- Massive multilingual translation -- Fine-tuning the performance of multilingual models -- Summary -- References -- Chapter 14: Serving Transformer Models -- Technical requirements -- FastAPI Transformer model serving -- Dockerizing APIs -- Faster Transformer model serving using TFX -- Load testing using Locust -- Faster inference using ONNX -- SageMaker inference -- Summary -- Further reading -- Chapter 15: Model Tracking and Monitoring -- Technical requirements -- Tracking model metrics -- Tracking model training with TensorBoard -- Tracking model training live with W&amp -- B -- Summary -- Further reading -- Part 4: Transformers beyond NLP -- Chapter 16: Vision Transformers -- Technical requirements -- Vision transformers -- Image classification using transformers -- Semantic segmentation and object detection using transformers -- Visual prompt models -- Summary -- Chapter 17: Multimodal Generative Transformers -- Technical requirements -- Multimodal learning -- Generative multimodal AI -- Stable Diffusion for text-to-image generation -- Stable Diffusion in action -- Music generation using MusicGen -- Text-to-speech generation using transformers -- Summary…”
    Libro electrónico
  14. 54
    Publicado 2018
    Tabla de Contenidos: “…-- Step-by-step installation -- Installing the necessary packages -- Package upgrades -- Scientific distributions -- Anaconda -- Leveraging conda to install packages -- Enthought Canopy -- WinPython -- Explaining virtual environments -- Conda for managing environments -- A glance at the essential packages -- NumPy -- SciPy -- pandas -- pandas-profiling -- Scikit-learn -- Jupyter -- JupyterLab -- Matplotlib -- Seaborn -- Statsmodels -- Beautiful Soup -- NetworkX -- NLTK -- Gensim -- PyPy -- XGBoost -- LightGBM -- CatBoost -- TensorFlow -- Keras -- Introducing Jupyter -- Fast installation and first test usage -- Jupyter magic commands -- Installing packages directly from Jupyter Notebooks -- Checking the new JupyterLab environment -- How Jupyter Notebooks can help data scientists -- Alternatives to Jupyter -- Datasets and code used in this book -- Scikit-learn toy datasets -- The MLdata.org and other public repositories for open source data -- LIBSVM data examples -- Loading data directly from CSV or text files -- Scikit-learn sample generators -- Summary -- Chapter 2: Data Munging -- The data science process -- Data loading and preprocessing with pandas -- Fast and easy data loading -- Dealing with problematic data -- Dealing with big datasets -- Accessing other data formats -- Putting data together -- Data preprocessing -- Data selection -- Working with categorical and textual data -- A special type of data - text -- Scraping the web with Beautiful Soup -- Data processing with NumPy -- NumPy's n-dimensional array -- The basics of NumPy ndarray objects -- Creating NumPy arrays -- From lists to unidimensional arrays…”
    Libro electrónico
  15. 55
    Publicado 2024
    Tabla de Contenidos: “…Monitoring -- Logs -- Metrics -- System metrics -- Model metrics -- Drifts -- Monitoring vs. observability -- Alerts -- 6. …”
    Libro electrónico
  16. 56
    Publicado 2024
    Tabla de Contenidos: “…-- Costs and trade-offs of interoperability -- ESP32-H2 -- Interoperability concept, approaches, and principles for building with IoT -- Concepts, approaches, and principles -- Types of interoperability -- Layers of IoT -- Architecting for interoperability -- Projects working toward greater interoperability -- Global interoperability -- Interoperability within the cloud -- E-health platform case study -- Advancing the interoperability of IoT platforms -- Practical - Creating a Telegram household motion detector -- Creating a chatbot -- Getting a Telegram user ID -- Working with the Arduino IDE -- Hardware setup -- Coding it up -- Outcome -- Summary -- Further reading -- Part 3: Operating, Maintaining, and Securing IoT Networks -- Chapter 9: Operating and Monitoring IoT Networks -- Technical requirements -- Continuous operation of IoT systems -- Challenges and benefits of maintaining continuous operation -- Strategies for achieving continuous operation -- Automation and machine learning in monitoring -- Exercise on simulating monitoring networks -- Setting KPIs and the metrics for success -- Setting clear objectives and goals for monitoring -- Different types of KPIs -- Selecting, analyzing, and monitoring KPIs -- Monitoring capabilities on-premises and on the cloud -- Monitoring for security purposes -- Creating a unified monitoring solution -- Practical - operating and monitoring a joke creator with IoT Greengrass -- Setting up your OpenAI account -- Spinning up an Amazon EC2 instance -- Configure AWS Greengrass on Amazon EC2 -- Monitoring the EC2 Thing when publishing messages -- Summary -- Further reading -- Chapter 10: Working with Data and Analytics -- Technical requirements…”
    Libro electrónico
  17. 57
    Publicado 2019
    Tabla de Contenidos: “…Describing the Context of Data Science Programming Languages -- Unfolding Open Source Frameworks for AI/ML Models -- TensorFlow -- Theano -- Torch -- Caffe and Caffe2 -- The Microsoft Cognitive Toolkit (previously known as Microsoft CNTK) -- Keras -- Scikit-learn -- Spark MLlib -- Azure ML Studio -- Amazon Machine Learning -- Choosing Open Source or Not? …”
    Libro electrónico
  18. 58
    Publicado 2023
    Tabla de Contenidos: “…Part 2: Developing Custom Object Detection Models -- Chapter 3: Data Preparation for Object Detection Applications -- Technical requirements -- Common data sources -- Getting images -- Selecting an image labeling tool -- Annotation formats -- Labeling the images -- Annotation format conversions -- Converting YOLO datasets to COCO datasets -- Converting Pascal VOC datasets to COCO datasets -- Summary -- Chapter 4: The Architecture of the Object Detection Model in Detectron2 -- Technical requirements -- Introduction to the application architecture -- The backbone network -- Region Proposal Network -- The anchor generator -- The RPN head -- The RPN loss calculation -- Proposal predictions -- Region of Interest Heads -- The pooler -- The box predictor -- Summary -- Chapter 5: Training Custom Object Detection Models -- Technical requirements -- Processing data -- The dataset -- Downloading and performing initial explorations -- Data format conversion -- Displaying samples -- Using the default trainer -- Selecting the best model -- Evaluation metrics for object detection models -- Selecting the best model -- Inferencing thresholds -- Sample predictions -- Developing a custom trainer -- Utilizing the hook system -- Summary -- Chapter 6: Inspecting Training Results and Fine-Tuning Detectron2's Solvers -- Technical requirements -- Inspecting training histories with TensorBoard -- Understanding Detectron2's solvers -- Gradient descent -- Stochastic gradient descent -- Momentum -- Variable learning rates -- Fine-tuning the learning rate and batch size -- Summary -- Chapter 7: Fine-Tuning Object Detection Models -- Technical requirements -- Setting anchor sizes and anchor ratios -- Preprocessing input images -- Sampling training data and generating the default anchors -- Generating sizes and ratios hyperparameters -- Setting pixel means and standard deviations…”
    Libro electrónico
  19. 59
    Publicado 2017
    Tabla de Contenidos: “…Merging SparkR DataFrames -- Using User Defined Functions (UDFs) -- Using SparkR for computing summary statistics -- Using SparkR for data visualization -- Visualizing data on a map -- Visualizing graph nodes and edges -- Using SparkR for machine learning -- Summary -- Chapter 9: Developing Applications with Spark SQL -- Introducing Spark SQL applications -- Understanding text analysis applications -- Using Spark SQL for textual analysis -- Preprocessing textual data -- Computing readability -- Using word lists -- Creating data preprocessing pipelines -- Understanding themes in document corpuses -- Using Naive Bayes classifiers -- Developing a machine learning application -- Summary -- Chapter 10: Using Spark SQL in Deep Learning Applications -- Introducing neural networks -- Understanding deep learning -- Understanding representation learning -- Understanding stochastic gradient descent -- Introducing deep learning in Spark -- Introducing CaffeOnSpark -- Introducing DL4J -- Introducing TensorFrames -- Working with BigDL -- Tuning hyperparameters of deep learning models -- Introducing deep learning pipelines -- Understanding Supervised learning -- Understanding convolutional neural networks -- Using neural networks for text classification -- Using deep neural networks for language processing -- Understanding Recurrent Neural Networks -- Introducing autoencoders -- Summary -- Chapter 11: Tuning Spark SQL Components for Performance -- Introducing performance tuning in Spark SQL -- Understanding DataFrame/Dataset APIs -- Optimizing data serialization -- Understanding Catalyst optimizations -- Understanding the Dataset/DataFrame API -- Understanding Catalyst transformations -- Visualizing Spark application execution -- Exploring Spark application execution metrics -- Using external tools for performance tuning -- Cost-based optimizer in Apache Spark 2.2.…”
    Libro electrónico
  20. 60
    por Prakash, Kolla Bhanu
    Publicado 2024
    Tabla de Contenidos: “…-- 1.6.20 Online Video Streaming (Netflix) -- 1.7 Challenges in Machine Learning -- 1.8 Limitations of Machine Learning -- 1.9 Projects in Machine Learning -- References -- Chapter 2 Machine Learning Building Blocks -- 2.1 Data Collection -- 2.1.1 Importing the Data from CSV Files -- 2.2 Data Preparation -- 2.2.1 Data Exploration -- 2.2.2 Data Pre-Processing -- 2.3 Data Wrangling -- 2.4 Data Analysis -- 2.5 Model Selection -- 2.6 Model Building -- 2.7 Model Evaluation -- 2.7.1 Classification Metrics -- 2.7.1.1 Accuracy -- 2.7.1.2 Precision -- 2.7.1.3 Recall -- 2.7.2 Regression Metrics -- 2.7.2.1 Mean Squared Error -- 2.7.2.2 Root Mean Squared Error -- 2.7.2.3 Mean Absolute Error -- 2.8 Deployment…”
    Libro electrónico