Mostrando 1 - 20 Resultados de 71 Para Buscar 'Tensor métrico~', tiempo de consulta: 3.67s Limitar resultados
  1. 1
    Publicado 2021
    Tabla de Contenidos: “…Matricization -- 3.8. Subspaces associated with a tensor and multilinear rank -- 3.9. …”
    Libro electrónico
  2. 2
    por Denis-Papin, Maurice
    Publicado 1958
    Materias: “…Matrices…”
    Libro
  3. 3
    Publicado 2022
    Tabla de Contenidos: “…6.7.3 Attention Mechanism Network -- 6.7.4 Graph Convolutional Neural Network -- 6.8 Hands-On of Automobile Fuel Consumption Prediction -- 6.8.1 Dataset -- 6.8.2 Create a Network -- 6.8.3 Training and Testing -- 6.9 References -- Chapter 7: Backward Propagation Algorithm -- 7.1 Derivatives and Gradients -- 7.2 Common Properties of Derivatives -- 7.2.1 Common Derivatives -- 7.2.2 Common Property of Derivatives -- 7.2.3 Hands-On Derivative Finding -- 7.3 Derivative of Activation Function -- 7.3.1 Derivative of Sigmoid Function -- 7.3.2 Derivative of ReLU Function -- 7.3.3 Derivative of LeakyReLU Function -- 7.3.4 Derivative of Tanh Function -- 7.4 Gradient of Loss Function -- 7.4.1 Gradient of Mean Square Error Function -- 7.4.2 Gradient of Cross-Entropy Function -- 7.5 Gradient of Fully Connected Layer -- 7.5.1 Gradient of a Single Neuron -- 7.5.2 Gradient of Fully Connected Layer -- 7.6 Chain Rule -- 7.7 Back Propagation Algorithm -- 7.8 Hands-On Optimization of Himmelblau -- 7.9 Hands-On Back Propagation Algorithm -- 7.9.1 Dataset -- 7.9.2 Network Layer -- 7.9.3 Network model -- 7.9.4 Network Training -- 7.9.5 Network Performance -- 7.10 References -- Chapter 8: Keras Advanced API -- 8.1 Common Functional Modules -- 8.1.1 Common Network Layer Classes -- 8.1.2 Network Container -- 8.2 Model Configuration, Training, and Testing -- 8.2.1 Model Configuration -- 8.2.2 Model Training -- 8.2.3 Model Testing -- 8.3 Model Saving and Loading -- 8.3.1 Tensor Method -- 8.3.2 Network Method -- 8.3.3 SavedModel method -- 8.4 Custom Network -- 8.4.1 Custom Network Layer -- 8.4.2 Customized Network -- 8.5 Model Zoo -- 8.5.1 Load Model -- 8.6 Metrics -- 8.6.1 Create a Metrics Container -- 8.6.2 Write Data -- 8.6.3 Read Statistical Data -- 8.6.4 Clear the Container -- 8.6.5 Hands-On Accuracy Metric -- 8.7 Visualization -- 8.7.1 Model Side -- 8.7.2 Browser Side…”
    Libro electrónico
  4. 4
    Publicado 2022
    Tabla de Contenidos: “…-- Dropout -- Early Stopping -- Additional Methods -- Exercises -- References -- Chapter 5: Advanced Optimizers -- Available Optimizers in Keras in TensorFlow 2.5 -- Advanced Optimizers -- Exponentially Weighted Averages -- Momentum -- RMSProp -- Adam -- Comparison of the Optimizers' Performance -- Small Coding Digression -- Which Optimizer Should You Use?…”
    Libro electrónico
  5. 5
    por Henry, Guillermo Sebastián
    Publicado 2009
    “…En este trabajo estudiamos los tensores de tipo (0,2). Con este objetivo introduci- mos y desarrollamos el concepto de super espacio. …”
    Enlace del recurso
    Tesis
  6. 6
    Publicado 2021
    Tabla de Contenidos: “…Networks for sequence data -- RNNs and LSTMs -- Building a better optimizer -- Gradient descent to ADAM -- Xavier initialization -- Summary -- References -- Chapter 4: Teaching Networks to Generate Digits -- The MNIST database -- Retrieving and loading the MNIST dataset in TensorFlow -- Restricted Boltzmann Machines: generating pixels with statistical mechanics -- Hopfield networks and energy equations for neural networks -- Modeling data with uncertainty with Restricted Boltzmann Machines -- Contrastive divergence: Approximating a gradient -- Stacking Restricted Boltzmann Machines to generate images: the Deep Belief Network -- Creating an RBM using the TensorFlow Keras layers API -- Creating a DBN with the Keras Model API -- Summary -- References -- Chapter 5: Painting Pictures with Neural Networks Using VAEs -- Creating separable encodings of images -- The variational objective -- The reparameterization trick -- Inverse Autoregressive Flow -- Importing CIFAR -- Creating the network from TensorFlow 2 -- Summary -- References -- Chapter 6: Image Generation with GANs -- The taxonomy of generative models -- Generative adversarial networks -- The generator model -- Training GANs -- Non-saturating generator cost -- Maximum likelihood game -- Vanilla GAN -- Improved GANs -- Deep Convolutional GAN -- Vector arithmetic -- Conditional GAN -- Wasserstein GAN -- Progressive GAN -- The overall method -- Progressive growth-smooth fade-in -- Minibatch standard deviation -- Equalized learning rate -- Pixelwise normalization -- TensorFlow Hub implementation -- Challenges -- Training instability -- Mode collapse -- Uninformative loss and evaluation metrics -- Summary -- References -- Chapter 7: Style Transfer with GANs -- Paired style transfer using pix2pix GAN -- The U-Net generator -- The Patch-GAN discriminator -- Loss -- Training pix2pix -- Use cases…”
    Libro electrónico
  7. 7
    Publicado 2014
    “…Matrices, determinantes, vectores y tensores…”
    Libro electrónico
  8. 8
    por Breiding, Paul
    Publicado 2024
    Libro electrónico
  9. 9
    Publicado 2020
    “…"ML development often focuses on metrics, delaying work on deployment and scaling issues. …”
    Vídeo online
  10. 10
    Publicado 2020
    “…Fairness Indicators is a new feature built into TensorFlow Extended (TFX) and on top of TensorFlow Model Analysis. …”
    Vídeo online
  11. 11
    Publicado 2017
    “…This course builds on the training in Marvin Bertin's "Introduction to TensorFlow-Slim", which covered the basic concepts and uses of the TensorFlow-Slim (TF-Slim) API. …”
    Video
  12. 12
    Publicado 2018
    Tabla de Contenidos: “…Chapter 3: Monitoring Network Training Using TensorBoard -- A brief overview of TensorBoard -- Setting up TensorBoard -- Installing TensorBoard -- How TensorBoard talks to Keras/TensorFlow -- Running TensorBoard -- Connecting Keras to TensorBoard -- Introducing Keras callbacks -- Creating a TensorBoard callback -- Using TensorBoard -- Visualizing training -- Visualizing network graphs -- Visualizing a broken network -- Summary -- Chapter 4: Using Deep Learning to Solve Binary Classification Problems -- Binary classification and deep neural networks -- Benefits of deep neural networks -- Drawbacks of deep neural networks -- Case study - epileptic seizure recognition -- Defining our dataset -- Loading data -- Model inputs and outputs -- The cost function -- Using metrics to assess the performance -- Building a binary classifier in Keras -- The input layer -- The hidden layers -- What happens if we use too many neurons? …”
    Libro electrónico
  13. 13
    Publicado 2017
    Libro electrónico
  14. 14
    Publicado 2018
    Tabla de Contenidos: “…Cover -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started -- Understanding deep learning -- Perceptron -- Activation functions -- Sigmoid -- The hyperbolic tangent function -- The Rectified Linear Unit (ReLU) -- Artificial neural network (ANN) -- One-hot encoding -- Softmax -- Cross-entropy -- Dropout -- Batch normalization -- L1 and L2 regularization -- Training neural networks -- Backpropagation -- Gradient descent -- Stochastic gradient descent -- Playing with TensorFlow playground -- Convolutional neural network -- Kernel -- Max pooling -- Recurrent neural networks (RNN) -- Long short-term memory (LSTM) -- Deep learning for computer vision -- Classification -- Detection or localization and segmentation -- Similarity learning -- Image captioning -- Generative models -- Video analysis -- Development environment setup -- Hardware and Operating Systems - OS -- General Purpose - Graphics Processing Unit (GP-GPU) -- Computer Unified Device Architecture - CUDA -- CUDA Deep Neural Network - CUDNN -- Installing software packages -- Python -- Open Computer Vision - OpenCV -- The TensorFlow library -- Installing TensorFlow -- TensorFlow example to print Hello, TensorFlow -- TensorFlow example for adding two numbers -- TensorBoard -- The TensorFlow Serving tool -- The Keras library -- Summary -- Chapter 2: Image Classification -- Training the MNIST model in TensorFlow -- The MNIST datasets -- Loading the MNIST data -- Building a perceptron -- Defining placeholders for input data and targets -- Defining the variables for a fully connected layer -- Training the model with data -- Building a multilayer convolutional network -- Utilizing TensorBoard in deep learning -- Training the MNIST model in Keras -- Preparing the dataset -- Building the model…”
    Libro electrónico
  15. 15
    Publicado 2021
    Tabla de Contenidos:
    Libro electrónico
  16. 16
    Publicado 2018
    Tabla de Contenidos: “…Data download and exploration -- Preparing the data for our models -- The binary classification model -- The regression model -- Improving the binary classification model -- The unreasonable effectiveness of data -- Summary -- Chapter 5: Image Classification Using Convolutional Neural Networks -- CNNs -- Convolutional layers -- Pooling layers -- Dropout -- Flatten layers, dense layers, and softmax -- Image classification using the MXNet library -- Base model (no convolutional layers) -- LeNet -- Classification using the fashion MNIST dataset -- References/further reading -- Summary -- Chapter 6: Tuning and Optimizing Models -- Evaluation metrics and evaluating performance -- Types of evaluation metric -- Evaluating performance -- Data preparation -- Different data distributions -- Data partition between training, test, and validation sets -- Standardization -- Data leakage -- Data augmentation -- Using data augmentation to increase the training data -- Test time augmentation -- Using data augmentation in deep learning libraries -- Tuning hyperparameters -- Grid search -- Random search -- Use case-using LIME for interpretability -- Model interpretability with LIME -- Summary -- Chapter 7: Natural Language Processing Using Deep Learning -- Document classification -- The Reuters dataset -- Traditional text classification -- Deep learning text classification -- Word vectors -- Comparing traditional text classification and deep learning -- Advanced deep learning text classification -- 1D convolutional neural network model -- Recurrent neural network model -- Long short term memory model -- Gated Recurrent Units model -- Bidirectional LSTM model -- Stacked bidirectional model -- Bidirectional with 1D convolutional neural network model -- Comparing the deep learning NLP architectures -- Summary -- Chapter 8: Deep Learning Models Using TensorFlow in R.…”
    Libro electrónico
  17. 17
    Publicado 2022
    Tabla de Contenidos: “…-- The rise of Transformer 4.0 seamless APIs -- Choosing ready-to-use API-driven libraries -- Choosing a Transformer Model -- The role of Industry 4.0 artificial intelligence specialists -- Summary -- Questions -- References -- Chapter 2: Getting Started with the Architecture of the Transformer Model -- The rise of the Transformer: Attention is All You Need -- The encoder stack -- Input embedding -- Positional encoding -- Sublayer 1: Multi-head attention -- Sublayer 2: Feedforward network -- The decoder stack -- Output embedding and position encoding -- The attention layers -- The FFN sublayer, the post-LN, and the linear layer -- Training and performance -- Tranformer models in Hugging Face -- Summary -- Questions -- References -- Chapter 3: Fine-Tuning BERT Models -- The architecture of BERT -- The encoder stack -- Preparing the pretraining input environment -- Pretraining and fine-tuning a BERT model -- Fine-tuning BERT -- Hardware constraints -- Installing the Hugging Face PyTorch interface for BERT -- Importing the modules -- Specifying CUDA as the device for torch -- Loading the dataset -- Creating sentences, label lists, and adding BERT tokens -- Activating the BERT tokenizer -- Processing the data -- Creating attention masks -- Splitting the data into training and validation sets -- Converting all the data into torch tensors -- Selecting a batch size and creating an iterator -- BERT model configuration…”
    Libro electrónico
  18. 18
    Publicado 2017
    Tabla de Contenidos: “…Cover -- Copyright -- Credits -- About the Authors -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Maths for Neural Networks -- Understanding linear algebra -- Environment setup -- Setting up the Python environment in Pycharm -- Linear algebra structures -- Scalars, vectors, and matrices -- Tensors -- Operations -- Vectors -- Matrices -- Matrix multiplication -- Trace operator -- Matrix transpose -- Matrix diagonals -- Identity matrix -- Inverse matrix -- Solving linear equations -- Singular value decomposition -- Eigenvalue decomposition -- Principal Component Analysis -- Calculus -- Gradient -- Hessian -- Determinant -- Optimization -- Optimizers -- Summary -- Chapter 2: Deep Feedforward Networks -- Defining feedforward networks -- Understanding backpropagation -- Implementing feedforward networks with TensorFlow -- Analyzing the Iris dataset -- Code execution -- Implementing feedforward networks with images -- Analyzing the effect of activation functions on the feedforward networks accuracy -- Summary -- Chapter 3: Optimization for Neural Networks -- What is optimization? …”
    Libro electrónico
  19. 19
    Publicado 2018
    Tabla de Contenidos: “…Activity: Exploring the Bitcoin Dataset and Preparing Data for Model -- Using Keras as a TensorFlow Interface -- Model Components -- Activity: Creating a TensorFlow Model Using Keras -- From Data Preparation to Modeling -- Training a Neural Network -- Reshaping Time-Series Data -- Making Predictions -- Overfitting -- Activity: Assembling a Deep Learning System -- Summary -- Chapter 6: Model Evaluation and Optimization -- Model Evaluation -- Problem Categories -- Loss Functions, Accuracy, and Error Rates -- Different Loss Functions, Same Architecture -- Using TensorBoard -- Implementing Model Evaluation Metrics -- Evaluating the Bitcoin Model -- Overfitting -- Model Predictions -- Interpreting Predictions -- Activity:Creating an Active Training Environment -- Hyperparameter Optimization -- Layers and Nodes - Adding More Layers -- Adding More Nodes -- Layers and Nodes - Implementation -- Epochs -- Epochs - Implementation -- Activation Functions -- Linear (Identity) -- Hyperbolic Tangent (Tanh) -- Rectifid Linear Unit -- Activation Functions - Implementation -- Regularization Strategies -- L2 Regularization -- Dropout -- Regularization Strategies - Implementation -- Optimization Results -- Activity:Optimizing a Deep Learning Model -- Summary -- Chapter 7: Productization -- Handling New Data -- Separating Data and Model -- Data Component -- Model Component -- Dealing with New Data -- Re-Training an Old Model -- Training a New Model -- Activity: Dealing with New Data -- Deploying a Model as a Web Application -- Application Architecture and Technologies -- Deploying and Using Cryptonic -- Activity: Deploying a Deep Learning Application -- Summary -- Other Books You May Enjoy -- Index…”
    Libro electrónico
  20. 20
    Publicado 2021
    Materias:
    Libro electrónico