Mostrando 1,961 - 1,980 Resultados de 2,030 Para Buscar 'T. F. Powys~', tiempo de consulta: 1.20s Limitar resultados
  1. 1961
    Publicado 2024
    Libro electrónico
  2. 1962
    por Leiva, Nicolas
    Publicado 2023
    Libro electrónico
  3. 1963
    por Lantz, Brett
    Publicado 2013
    Libro electrónico
  4. 1964
  5. 1965
    Word for dummies
    Word For Dummies
    Publicado 2022
    Libro electrónico
  6. 1966
    Publicado 2020
    Tabla de Contenidos: “…11.5.2 Wide-Sense Ergodic Processes 333 -- 11.6 Gaussian Processes 336 -- 11.7 Poisson Processes 339 -- 11.8 Summary 341 -- Problems 341 -- 12 Analysis and Processing of Random Processes 345 -- 12.1 Stochastic Continuity, Differentiation, and Integration 345 -- 12.1.1 Mean-Square Continuity 345 -- 12.1.2 Mean-Square Derivatives 346 -- 12.1.3 Mean-Square Integrals 347 -- 12.2 Power Spectral Density 347 -- 12.3 Noise 353 -- 12.3.1 White Noise 353 -- 12.4 Sampling of Random Signals 355 -- 12.5 Optimum Linear Systems 357 -- 12.5.1 Systems Maximizing Signal-to-Noise Ratio 357 -- 12.5.2 Systems Minimizing Mean-Square Error 359 -- 12.6 Summary 362 -- Problems 362 -- Bibliography 365 -- Books 365 -- Internet Websites 368 -- Answers 369 -- Index 387.…”
    Libro electrónico
  7. 1967
    Publicado 2020
    Tabla de Contenidos: “…Var[b] -- 4.4.3 Asymptotic Normality of the Least Squares Estimator -- 4.4.4 Asymptotic Efficiency -- 4.4.5 Linear Projections -- 4.5 Robust Estimation and Inference -- 4.5.1 Consistency of the Least Squares Estimator -- 4.5.2 A Heteroscedasticity Robust Covariance Matrix for Least Squares -- 4.5.3 Robustness to Clustering -- 4.5.4 Bootstrapped Standard Errors with Clustered Data -- 4.6 Asymptotic Distribution of a Function of b: The Delta Method -- 4.7 Interval Estimation -- 4.7.1 Forming a Confidence Interval for a Coefficient -- 4.7.2 Confidence Interval for a Linear Combination of Coefficients: the Oaxaca Decomposition -- 4.8 Prediction and Forecasting -- 4.8.1 Prediction Intervals -- 4.8.2 Predicting y when the Regression Model Describes Log y -- 4.8.3 Prediction Interval for y when the Regression Model Describes Log y -- 4.8.4 Forecasting -- 4.9 Data Problems -- 4.9.1 Multicollinearity -- 4.9.2 Principal Components -- 4.9.3 Missing Values and Data Imputation -- 4.9.4 Measurement Error -- 4.9.5 Outliers and Influential Observations -- 4.10 Summary and Conclusions -- CHAPTER 5 Hypothesis Tests and Model Selection -- 5.1 Introduction -- 5.2 Hypothesis Testing Methodology -- 5.2.1 Restrictions and Hypotheses -- 5.2.2 Nested Models -- 5.2.3 Testing Procedures -- 5.2.4 Size, Power, and Consistency of a Test -- 5.2.5 A Methodological Dilemma: Bayesian Versus Classical Testing -- 5.3 Three Approaches to Testing Hypotheses -- 5.3.1 Wald Tests Based on the Distance Measure…”
    Libro electrónico
  8. 1968
    Publicado 2023
    Tabla de Contenidos: “…-- 3.6.3 Nominal Interest Rates -- 3.7 Appendix: Force of Interest - An Analogy with Mortality Rates -- 3.8 Recommended Reading -- 4 Financial Mathematics (2): Miscellaneous Examples -- 4.1 Introduction -- 4.2 Writing Annuity Functions -- 4.2.1 Writing a function for an annuity certain -- 4.3 The 'presentValue' Function -- 4.4 Annuity Function -- 4.5 Bonds - Pricing and Yield Calculations -- 4.6 Bond Pricing: Non-Constant Interest Rates -- 4.7 The Effect of Future Yield Changes on Bond Prices Throughout the Term of the Bond -- 4.8 Loan Schedules -- 4.8.1 Introduction -- 4.8.2 Method 1 -- 4.8.3 Method 2 -- 4.9 Recommended Reading -- 5 Fundamental Statistics: A Selection of Key Topics -- 5.1 Introduction -- 5.2 Basic Distributions in Statistics -- 5.3 Some Useful Functions for Descriptive Statistics -- 5.3.1 Introduction -- 5.3.2 Bivariate or Higher Order Data Structure -- 5.4 Statistical Tests -- 5.4.1 Exploring for Normality or Any Other Distribution in the Data -- 5.4.2 Goodness-of-fit Testing for Fitted Distributions to Data -- 5.4.2.1 Continuous distributions -- 5.4.2.2 Discrete distributions -- 5.4.3 T-tests -- 5.4.3.1 One sample test for the mean -- 5.4.3.2 Two sample tests for the mean -- 5.4.4 F-test for Equal Variances -- 5.5 Main Principles of Maximum Likelihood Estimation -- 5.5.1 Introduction -- 5.5.2 MLE of the Exponential Distribution -- 5.5.2.1 Obtaining the MLE numerically using R -- 5.5.2.2 Obtaining the MLE analytically -- 5.5.3 Large Sample (Asymptotic) Properties of MLE…”
    Libro electrónico
  9. 1969
    por Srivastava, Sumit
    Publicado 2024
    Tabla de Contenidos: “…2.2 Methodology -- 2.2.1 Collection of Plant Material -- 2.2.2 Qualitative Analysis of Phytochemicals -- 2.2.3 Study of In Vitro Antiurolithiatic Activity Using Titrimetry Method -- 2.2.3.1 Preparation of Calcium Oxalate -- 2.2.3.2 Preparation of Semipermeable Membrane From Eggs -- 2.2.3.3 In Vitro Antiurolithiatic Test Using Titrimetry Method -- 2.3 Result and Discussion -- 2.3.1 In Vitro Antiurolithiatic Activity Test -- 2.3.2 Analysis of Dissolved Calcium Oxalate -- 2.4 Conclusion -- References -- Chapter 3 Parkinson's Disease Detection Using Voice and Speech- Systematic Literature Review -- 3.1 Introduction -- 3.2 Research Questions -- 3.3 Method -- 3.3.1 Search Strategy -- 3.3.2 Inclusion Criteria -- 3.3.3 Subprocesses Involved in PD Detection Process -- 3.3.4 Data Sets -- 3.3.4.1 Parkinson's Data Set-UCI Machine Learning Dataset -- 3.3.4.2 PC-GITA Dataset -- 3.3.4.3 mPower Dataset -- 3.3.4.4 Mobile Device Voice Recordings (MDVR-KCL) Dataset -- 3.3.4.5 Italian Parkinson's Voice and Speech (IPVS) Dataset -- 3.3.4.6 Parkinson Speech Dataset With Multiple Types of Sound Recordings Dataset -- 3.3.4.7 Parkinson's Telemonitoring Dataset -- 3.4 Algorithms -- 3.5 Features -- 3.5.1 Acoustic Features -- 3.5.1.1 Jitter (Local, Absolute) -- 3.5.1.2 Jitter (Local) -- 3.5.1.3 Jitter (rap) -- 3.5.1.4 Jitter (ppq5) -- 3.5.1.5 Shimmer (Local) -- 3.5.1.6 Shimmer (local, dB) -- 3.5.1.7 Shimmer (apq3) -- 3.5.1.8 Shimmer (apq5) -- 3.5.2 Spectogram-Based Methods -- 3.5.2.1 MFCC -- 3.6 Conclusion -- References -- Chapter 4 Tumor Detection and Classification -- 4.1 Introduction -- 4.2 Methods Used for Detection of Tumors -- 4.3 Methods Used for Classification of Tumours -- 4.3.1 Segmentation -- 4.3.2 Region Growing Method -- 4.3.3 Seeded Region Growing Method -- 4.3.4 Unseeded Region Growing Method -- 4.3.5 .…”
    Libro electrónico
  10. 1970
    Publicado 2016
    Libro electrónico
  11. 1971
    por Chakraverty, Snehashish
    Publicado 2024
    Libro electrónico
  12. 1972
  13. 1973
    Publicado 2010
    Libro electrónico
  14. 1974
    Publicado 2017
    “…About This Book Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics. …”
    Libro electrónico
  15. 1975
    Publicado 2014
    Libro electrónico
  16. 1976
    Publicado 2017
    Libro electrónico
  17. 1977
    Publicado 2022
    Libro electrónico
  18. 1978
    Publicado 2009
    Libro electrónico
  19. 1979
    Publicado 2018
    Libro electrónico
  20. 1980
    Publicado 2011
    “…Realize your vision with stunning renders of your 3ds Max projects that can only be achieved with a powerful engine like mental ray. Beginning with a concise review of the essential concepts, you proceed to step-by-step tutorials that teach you how to render scenes with indirect light or with specific effects, such as depth of field and motion blur. …”
    Libro electrónico