Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Management 55
- Engineering & Applied Sciences 54
- History 46
- Historia 43
- Leadership 32
- Application software 31
- Development 31
- Data processing 29
- Computer Science 28
- Computer networks 24
- Design 23
- Politics and government 23
- RELIGION 22
- Business & Economics 21
- Digital techniques 21
- Python (Computer program language) 21
- Security measures 20
- Photography 18
- Design and construction 17
- Energy 17
- Social aspects 17
- Cities and towns 16
- Electrical & Computer Engineering 16
- Política y gobierno 16
- Artificial intelligence 15
- Cloud computing 15
- Electrónica 15
- Programming 15
- Organizational change 14
- Computer graphics 13
-
1741
-
1742Publicado 2018Libro electrónico
-
1743
-
1744
-
1745
-
1746Publicado 2023Libro electrónico
-
1747
-
1748
-
1749
-
1750
-
1751Publicado 2011“…That is the gift that David F einberg has brought to U CLA. I am in awe of his management skills."…”
Grabación no musical -
1752Publicado 2015Libro electrónico
-
1753
-
1754
-
1755
-
1756
-
1757
-
1758
-
1759
-
1760Publicado 2024Tabla de Contenidos: “…-- Evaluating on test (holdout) data -- Understanding evaluation metrics -- Evaluating regression models -- R-squared -- Root mean squared error -- Mean absolute error -- When and how to use each metric -- Practical evaluation strategies -- Summarizing the evaluation of regression models -- Evaluating classification models -- Classification model evaluation metrics -- Precision, recall, and F1-Score -- Recall -- F1-score -- Methods for explaining machine learning models -- Making sense of regression models - the power of coefficients -- Decoding classification models - unveiling feature importance -- Beyond specific models - universal insights using SHAP values -- Summary -- Common Pitfalls in Machine Learning -- Understanding the complexity -- Dirty data, damaged models - how data quantity and quality impact ML -- The importance of adequate training data -- Dealing with poor data quality -- Conclusion -- Overcoming overfitting and underfitting -- Navigating training-serving skew and model drift -- Ensuring fairness -- Mastering overfitting and underfitting for optimal model performance…”
Libro electrónico