Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Machine learning 15
- Data mining 12
- Història 12
- Data processing 10
- Roc 10
- Bíblia 9
- Narracions bíbliques 8
- Historia 7
- Artificial intelligence 6
- Exposicions 6
- Computer programs 5
- Culte 5
- Python (Computer program language) 5
- R (Computer program language) 5
- Sants 5
- Management 4
- Statistical methods 4
- AI 3
- Antic Testament 3
- Artificial Intelligence 3
- Aspectes socials 3
- Big data 3
- Digital techniques 3
- Educación 3
- Image processing 3
- Investigació 3
- KI 3
- Künstliche Intelligenz 3
- Mathematics 3
- Narracions bíbliques catalanes 3
-
401Publicado 2012Biblioteca Universitat Ramon Llull (Otras Fuentes: Biblioteca de la Universidad Pontificia de Salamanca, Universidad Loyola - Universidad Loyola Granada)Libro electrónico
-
402Publicado 2017Tabla de Contenidos: “…-- Have a go hero -- Receiving operator curves -- Time for action - ROC construction -- What just happened? -- Doing it in Python -- Logistic regression for the German credit screening dataset -- Time for action - logistic regression for the German credit dataset -- What just happened? …”
Libro electrónico -
403
-
404Publicado 2012Biblioteca Universitat Ramon Llull (Otras Fuentes: Biblioteca de la Universidad Pontificia de Salamanca, Universidad Loyola - Universidad Loyola Granada)Libro electrónico
-
405Publicado 2018Tabla de Contenidos: “…-- Choosing a hidden layer architecture -- Coding the hidden layers for our example -- The output layer -- Putting it all together -- Training our model -- Using the checkpoint callback in Keras -- Measuring ROC AUC in a custom callback -- Measuring precision, recall, and f1-score -- Summary -- Chapter 5: Using Keras to Solve Multiclass Classification Problems -- Multiclass classification and deep neural networks -- Benefits -- Drawbacks -- Case study - handwritten digit classification -- Problem definition -- Model inputs and outputs -- Flattening inputs -- Categorical outputs -- Cost function -- Metrics -- Building a multiclass classifier in Keras -- Loading MNIST -- Input layer -- Hidden layers -- Output layer -- Softmax activation -- Putting it all together -- Training -- Using scikit-learn metrics with multiclass models -- Controlling variance with dropout…”
Libro electrónico -
406Publicado 2019Libro electrónico
-
407por Zhang, Liming, 1943-Tabla de Contenidos: “…5.3.3 Saliency Map Computation using Object Representation 184 -- 5.3.4 Using Attention for Object Recognition 184 -- 5.3.5 Implementation 185 -- 5.3.6 Optimizing the Selection of Top-down Bias 186 -- 5.4 Attention with Memory of Learning and Amnesic Function 187 -- 5.4.1 Visual Memory: Amnesic IHDR Tree 188 -- 5.4.2 Competition Neural Network Under the Guidance of Amnesic IHDR 191 -- 5.5 Top-down Computation in the Visual Attention System: VOCUS 193 -- 5.5.1 Bottom-up Features and Bottom-up Saliency Map 193 -- 5.5.2 Top-down Weights and Top-down Saliency Map 194 -- 5.5.3 Global Saliency Map 196 -- 5.6 Hybrid Model of Bottom-up Saliency with Top-down Attention Process 196 -- 5.6.1 Computation of the Bottom-up Saliency Map 197 -- 5.6.2 Learning of Fuzzy ART Networks and Top-down Decision 197 -- 5.7 Top-down Modelling in the Bayesian Framework 199 -- 5.7.1 Review of Basic Framework 200 -- 5.7.2 The Estimation of Conditional Probability Density 201 -- 5.8 Summary 202 -- References 202 -- 6 Validation and Evaluation for Visual Attention Models 207 -- 6.1 Simple Man-made Visual Patterns 207 -- 6.2 Human-labelled Images 208 -- 6.3 Eye-tracking Data 209 -- 6.4 Quantitative Evaluation 211 -- 6.4.1 Some Basic Measures 211 -- 6.4.2 ROC Curve and AUC Score 213 -- 6.4.3 Inter-subject ROC Area 213 -- 6.5 Quantifying the Performance of a Saliency Model to Human Eye Movement in Static and Dynamic Scenes 215 -- 6.6 Spearman's Rank Order Correlation with Visual Conspicuity 217 -- References 219 -- PART III APPLICATIONS OF ATTENTION SELECTION MODELS 221 -- 7 Applications in Computer Vision, Image Retrieval and Robotics 223 -- 7.1 Object Detection and Recognition in Computer Vision 224 -- 7.1.1 Basic Concepts 224 -- 7.1.2 Feature Extraction 224 -- 7.1.3 Object Detection and Classification 227 -- 7.2 Attention Based Object Detection and Recognition in a Natural Scene 231 -- 7.2.1 Object Detection Combined with Bottom-up Model 231 -- 7.2.2 Object Detection based on Attention Elicitation 233.…”
Publicado 2013
Libro electrónico -
408
-
409
-
410Publicado 2018Libro electrónico
-
411Publicado 2018“…Help employees understand the career-enhancing aspects of change How to maximize your organization’s ROC (return on change). Most of the activity related to change management focuses on successfully implementing individual projects. …”
Libro electrónico -
412Publicado 2017Libro electrónico
-
413Publicado 2015Tabla de Contenidos: “…4.7.3 Gamma GLMs for House Selling Price Data -- Appendix: GLM Analogs of Orthogonality Results for Linear Models -- Chapter Notes -- Exercises -- 5 Models for Binary Data -- 5.1 Link Functions for Binary Data -- 5.1.1 Ungrouped versus Grouped Binary Data -- 5.1.2 Latent Variable Threshold Model for Binary GLMs -- 5.1.3 Probit, Logistic, and Linear Probability Models -- 5.2 Logistic Regression: Properties and Interpretations -- 5.2.1 Interpreting : Effects on Probabilities and on Odds -- 5.2.2 Logistic Regression with Case-Control Studies -- 5.2.3 Logistic Regression is Implied by Normal Explanatory Variables -- 5.2.4 Summarizing Predictive Power: Classification Tables and ROC Curves -- 5.2.5 Summarizing Predictive Power: Correlation Measures -- 5.3 Inference About Parameters of Logistic Regression Models -- 5.3.1 Logistic Regression Likelihood Equations -- 5.3.2 Covariance Matrix of Logistic Parameter Estimators -- 5.3.3 Statistical Inference: Wald Method is Suboptimal -- 5.3.4 Conditional Logistic Regression to Eliminate Nuisance Parameters -- 5.4 Logistic Regression Model Fitting -- 5.4.1 Iterative Fitting of Logistic Regression Models -- 5.4.2 Infinite Parameter Estimates in Logistic Regression -- 5.5 Deviance and Goodness of Fit for Binary GLMS -- 5.5.1 Deviance and Pearson Goodness-of-Fit Statistics -- 5.5.2 Chi-Squared Tests of Fit and Model Comparisons -- 5.5.3 Residuals: Pearson, Deviance, and Standardized -- 5.5.4 Influence Diagnostics for Logistic Regression -- 5.6 Probit and Complementary Log-Log Models -- 5.6.1 Probit Models: Interpreting Effects -- 5.6.2 Probit Model Fitting -- 5.6.3 Log-Log and Complementary Log-Log Link Models -- 5.7 Examples: Binary Data Modeling -- 5.7.1 Example: Risk Factors for Endometrial Cancer Grade -- 5.7.2 Example: Dose-Response Study -- Chapter Notes -- Exercises -- 6 Multinomial Response Models…”
Libro electrónico -
414Publicado 2011Libro
-
415Publicado 2021Libro electrónico
-
416Publicado 2020Libro electrónico
-
417
-
418
-
419por Brown, IainTabla de Contenidos: “…4.4.2 Experimental Design for A/B Tests -- 4.4.3 Setting Up A/B Tests: A Step-by-Step Guide -- 4.4.4 Statistical Significance in A/B Tests -- 4.4.5 Advanced A/B Testing Techniques -- 4.4.6 Potential Pitfalls in A/B Testing -- 4.4.7 Interpreting A/B Test Results -- 4.5 Hypothesis Testing in Marketing -- 4.5.1 Introduction to Hypothesis Testing -- 4.5.2 Common Hypothesis Tests in Marketing -- 4.5.3 Significance Levels and P-Values -- 4.6 Customer Segmentation and Processing -- 4.6.1 K-Means Clustering -- 4.6.2 Hierarchical Clustering in Customer Segmentation -- 4.6.3 Recency, Frequency, Monetary Analysis in Marketing -- 4.7 Practical Examples: Inferential Analytics for Customer Segmentation and Hypothesis Testing for Marketing Campaign Performance -- 4.7.1 Inferential Analytics for Customer Segmentation -- 4.7.2 Hypothesis Testing for Marketing Campaign Performance -- 4.8 Conclusion -- 4.9 References -- Chapter 5 Predictive Analytics and Machine Learning -- 5.1 Introduction -- 5.1.1 Overview of Predictive Analytics -- 5.1.2 Machine Learning in Marketing -- 5.1.3 Common Challenges in Predictive Analytics and Machine Learning in Marketing -- 5.1.4 Misconceptions in Predictive Analytics and Machine Learning in Marketing -- 5.2 Predictive Analytics Techniques -- 5.2.1 Linear and Logistic Regression -- 5.2.2 Time Series Forecasting -- 5.3 Machine Learning Techniques -- 5.3.1 Supervised Learning for Marketing -- 5.3.2 Unsupervised Learning for Marketing -- 5.3.3 Reinforcement Learning for Marketing -- 5.4 Model Evaluation and Selection -- 5.4.1 Model Accuracy, Precision, and Recall -- 5.4.2 ROC Curves and AUC -- 5.4.3 Cross-Validation Techniques -- 5.4.4 Model Complexity and Overfitting -- 5.5 Churn Prediction, Customer Lifetime Value, and Propensity Modeling -- 5.5.1 Understanding Churn and Its Importance -- 5.5.2 CLV Computation and Applications…”
Publicado 2024
Libro electrónico -
420