Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Society & social sciences 285
- Historia 267
- History 187
- Humanities 152
- Literatura: historia y crítica 144
- Management 139
- Economics, finance, business & management 131
- Educación pedagogía 125
- Social aspects 125
- Leadership 110
- Filosofía 103
- Development 97
- Lenguas indoeuropeas 95
- Research 91
- Historia del arte / estilos de arte y diseño 90
- United States 90
- Engineering & Applied Sciences 89
- Prevention 86
- Government policy 79
- Finance 77
- Economic aspects 72
- Business & Economics 71
- Security measures 67
- Application software 65
- Computer networks 65
- Law and legislation 64
- Computer security 63
- Technological innovations 62
- Data processing 60
- Política y gobierno 60
-
7181
-
7182
-
7183
-
7184
-
7185
-
7186
-
7187
-
7188
-
7189
-
7190
-
7191
-
7192
-
7193
-
7194
-
7195
-
7196
-
7197Publicado 2017Tabla de Contenidos: “…Python via Canopy -- References -- Exercises -- Summary -- Chapter 7: Multifactor Models and Performance Measures -- Introduction to the Fama-French three-factor model -- Fama-French three-factor model -- Fama-French-Carhart four-factor model and Fama-French five-factor model -- Implementation of Dimson (1979) adjustment for beta -- Performance measures -- How to merge different datasets -- Appendix A - list of related Python datasets -- Appendix B - Python program to generate ffMonthly.pkl -- Appendix C - Python program for Sharpe ratio -- Appendix D - data case #4 - which model is the best, CAPM, FF3, FFC4, or FF5, or others? -- References -- Exercises -- Summary -- Chapter 8: Time-Series Analysis -- Introduction to time-series analysis -- Merging datasets based on a date variable -- Using pandas.date_range() to generate one dimensional time-series -- Return estimation -- Converting daily returns to monthly ones -- Merging datasets by date -- Understanding the interpolation technique -- Merging data with different frequencies -- Tests of normality -- Estimating fat tails -- T-test and F-test -- Tests of equal variances -- Testing the January effect -- 52-week high and low trading strategy -- Estimating Roll's spread -- Estimating Amihud's illiquidity -- Estimating Pastor and Stambaugh (2003) liquidity measure -- Fama-MacBeth regression -- Durbin-Watson -- Python for high-frequency data -- Spread estimated based on high-frequency data -- Introduction to CRSP -- References -- Appendix A - Python program to generate GDP dataset usGDPquarterly2.pkl -- Appendix B - critical values of F for the 0.05 significance level -- Appendix C - data case #4 - which political party manages the economy better? …”
Libro electrónico -
7198
-
7199
-
7200Publicado 2023Libro electrónico