Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Evangelització 2
- 1 Corinthians 1
- 1 Korintherbrief 1
- Anatomía artística 1
- Apologètica 1
- Apostle to the nations 1
- Arnobi 1
- Artificiality 1
- BUSINESS 1
- Bedrijfsleven 1
- Bibliografía 1
- Bikulturalität 1
- Biopolitics 1
- Business enterprises 1
- Commerce 1
- Commercial statistics 1
- Conditions économiques 1
- Crítica i interpretació 1
- ESTADISTICA COMERCIAL 1
- Ecology 1
- Economic conditions 1
- Economic history 1
- Economic indicators 1
- Economische ontwikkeling 1
- Environment 1
- Environmental Knowledge 1
- Església Catòlica 1
- Espectroscopia 1
- Estrés (Psicología) en el adolescente 1
- Faustkampf 1
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14Publicado 2019Tabla de Contenidos: “…Front Cover -- Deep Learning Through Sparse and Low-Rank Modeling -- Copyright -- Contents -- Contributors -- About the Editors -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Basics of Deep Learning -- 1.2 Basics of Sparsity and Low-Rankness -- 1.3 Connecting Deep Learning to Sparsity and Low-Rankness -- 1.4 Organization -- References -- 2 Bi-Level Sparse Coding: A Hyperspectral Image Classi cation Example -- 2.1 Introduction -- 2.2 Formulation and Algorithm -- 2.2.1 Notations -- 2.2.2 Joint Feature Extraction and Classi cation -- 2.2.2.1 Sparse Coding for Feature Extraction -- 2.2.2.2 Task-Driven Functions for Classi cation -- 2.2.2.3 Spatial Laplacian Regularization -- 2.2.3 Bi-level Optimization Formulation -- 2.2.4 Algorithm -- 2.2.4.1 Stochastic Gradient Descent -- 2.2.4.2 Sparse Reconstruction -- 2.3 Experiments -- 2.3.1 Classi cation Performance on AVIRIS Indiana Pines Data -- 2.3.2 Classi cation Performance on AVIRIS Salinas Data -- 2.3.3 Classi cation Performance on University of Pavia Data -- 2.4 Conclusion -- 2.5 Appendix -- References -- 3 Deep l0 Encoders: A Model Unfolding Example -- 3.1 Introduction -- 3.2 Related Work -- 3.2.1 l0- and l1-Based Sparse Approximations -- 3.2.2 Network Implementation of l1-Approximation -- 3.3 Deep l0 Encoders -- 3.3.1 Deep l0-Regularized Encoder -- 3.3.2 Deep M-Sparse l0 Encoder -- 3.3.3 Theoretical Properties -- 3.4 Task-Driven Optimization -- 3.5 Experiment -- 3.5.1 Implementation -- 3.5.2 Simulation on l0 Sparse Approximation -- 3.5.3 Applications on Classi cation -- 3.5.4 Applications on Clustering -- 3.6 Conclusions and Discussions on Theoretical Properties -- References -- 4 Single Image Super-Resolution: From Sparse Coding to Deep Learning -- 4.1 Robust Single Image Super-Resolution via Deep Networks with Sparse Prior -- 4.1.1 Introduction -- 4.1.2 Related Work…”
Libro electrónico -
15