Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Management 60
- Historia 56
- History 45
- Data processing 40
- Machine learning 38
- Development 35
- Web search engines 35
- Artificial intelligence 33
- Internet marketing 32
- Leadership 32
- Web sites 32
- Python (Computer program language) 29
- Application software 27
- Data mining 26
- Engineering & Applied Sciences 26
- Design 25
- Internet searching 25
- Business & Economics 23
- Education 23
- Computer networks 22
- Computer programs 21
- Database management 21
- Economics 20
- Computer Science 19
- Història 19
- Business 18
- Web site development 18
- Finance 17
- R (Computer program language) 17
- United States 17
-
41Publicado 2014“…In this book we investigate how structured Web data can be leveraged for ranking with the goal to improve the effectiveness of search. …”
Libro electrónico -
42por Platts, John T. 1830-1904Tabla de Contenidos: “…Platts ; revised and enlarged by G. S. A. Ranking -- Part. 2. Syntax / by George S. A. Ranking…”
Publicado 1911
Libro -
43
-
44
-
45
-
46Publicado 2004Biblioteca de la Universidad Pontificia de Salamanca (Otras Fuentes: Universidad Loyola - Universidad Loyola Granada)Acceso restringido con credenciales UPSA
Libro electrónico -
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54Publicado 2019Tabla de Contenidos: “…Front Cover -- Deep Learning Through Sparse and Low-Rank Modeling -- Copyright -- Contents -- Contributors -- About the Editors -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Basics of Deep Learning -- 1.2 Basics of Sparsity and Low-Rankness -- 1.3 Connecting Deep Learning to Sparsity and Low-Rankness -- 1.4 Organization -- References -- 2 Bi-Level Sparse Coding: A Hyperspectral Image Classi cation Example -- 2.1 Introduction -- 2.2 Formulation and Algorithm -- 2.2.1 Notations -- 2.2.2 Joint Feature Extraction and Classi cation -- 2.2.2.1 Sparse Coding for Feature Extraction -- 2.2.2.2 Task-Driven Functions for Classi cation -- 2.2.2.3 Spatial Laplacian Regularization -- 2.2.3 Bi-level Optimization Formulation -- 2.2.4 Algorithm -- 2.2.4.1 Stochastic Gradient Descent -- 2.2.4.2 Sparse Reconstruction -- 2.3 Experiments -- 2.3.1 Classi cation Performance on AVIRIS Indiana Pines Data -- 2.3.2 Classi cation Performance on AVIRIS Salinas Data -- 2.3.3 Classi cation Performance on University of Pavia Data -- 2.4 Conclusion -- 2.5 Appendix -- References -- 3 Deep l0 Encoders: A Model Unfolding Example -- 3.1 Introduction -- 3.2 Related Work -- 3.2.1 l0- and l1-Based Sparse Approximations -- 3.2.2 Network Implementation of l1-Approximation -- 3.3 Deep l0 Encoders -- 3.3.1 Deep l0-Regularized Encoder -- 3.3.2 Deep M-Sparse l0 Encoder -- 3.3.3 Theoretical Properties -- 3.4 Task-Driven Optimization -- 3.5 Experiment -- 3.5.1 Implementation -- 3.5.2 Simulation on l0 Sparse Approximation -- 3.5.3 Applications on Classi cation -- 3.5.4 Applications on Clustering -- 3.6 Conclusions and Discussions on Theoretical Properties -- References -- 4 Single Image Super-Resolution: From Sparse Coding to Deep Learning -- 4.1 Robust Single Image Super-Resolution via Deep Networks with Sparse Prior -- 4.1.1 Introduction -- 4.1.2 Related Work…”
Libro electrónico -
55
-
56Publicado 2020Libro electrónico
-
57Publicado 2011Libro electrónico
-
58por Velázquez, Guillermo A.
Publicado 2011Universidad Loyola - Universidad Loyola Granada (Otras Fuentes: Biblioteca de la Universidad Pontificia de Salamanca, Biblioteca Universitat Ramon Llull)Enlace del recurso
Artículo digital -
59Publicado 2004Libro electrónico
-
60