Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Machine learning 103
- Computer graphics 73
- Artificial intelligence 55
- Digital techniques 52
- Python (Computer program language) 51
- Design 48
- Photography 46
- Web sites 43
- Image processing 40
- Data processing 37
- Engineering & Applied Sciences 33
- History of engineering & technology 33
- Neural networks (Computer science) 32
- Adobe Photoshop 30
- Technology: general issues 29
- HTML (Document markup language) 28
- Research & information: general 28
- Cascading style sheets 25
- Computer animation 25
- Application software 24
- Mathematics 23
- machine learning 21
- Development 20
- Big data 19
- Flash (Computer file) 18
- Reinforcement learning 18
- Data mining 16
- Programming 16
- deep learning 16
- Computer programming 15
-
41Publicado 2022Materias:Libro electrónico
-
42
-
43
-
44
-
45Publicado 2014“…Thebook inspects an equivalent plastic strain gradient plasticity theory and a grain boundary yield model. …”
Libro electrónico -
46
-
47
-
48
-
49Publicado 2007Biblioteca de la Universidad Pontificia de Salamanca (Otras Fuentes: Biblioteca Universitat Ramon Llull)Acceso restringido con credenciales UPSA
Libro electrónico -
50Publicado 2009“…Modelación de isolíneas meteorológicas y cálculo del gradiente térmico para la ciudad de Puebla…”
Libro electrónico -
51
-
52
-
53
-
54
-
55Publicado 2013Materias:Libro electrónico
-
56
-
57
-
58
-
59Publicado 2018Tabla de Contenidos: “…Generator outputs of StackedGAN -- Conclusion -- Reference -- Chapter 7: Cross-Domain GANs -- Principles of CycleGAN -- The CycleGAN Model -- Implementing CycleGAN using Keras -- Generator outputs of CycleGAN -- CycleGAN on MNIST and SVHN datasets -- Conclusion -- References -- Chapter 8: Variational Autoencoders (VAEs) -- Principles of VAEs -- Variational inference -- Core equation -- Optimization -- Reparameterization trick -- Decoder testing -- VAEs in Keras -- Using CNNs for VAEs -- Conditional VAE (CVAE) -- -VAE: VAE with disentangled latent representations -- Conclusion -- References -- Chapter 9: Deep Reinforcement Learning -- Principles of reinforcement learning (RL) -- The Q value -- Q-Learning example -- Q-Learning in Python -- Nondeterministic environment -- Temporal-difference learning -- Q-Learning on OpenAI gym -- Deep Q-Network (DQN) -- DQN on Keras -- Double Q-Learning (DDQN) -- Conclusion -- References -- Chapter 10: Policy Gradient Methods -- Policy gradient theorem -- Monte Carlo policy gradient (REINFORCE) method -- REINFORCE with baseline method -- Actor-Critic method -- Advantage Actor-Critic (A2C) method -- Policy Gradient methods with Keras -- Performance evaluation of policy gradient methods -- Conclusion -- References -- Other Books You May Enjoy -- Index…”
Libro electrónico -
60