Mostrando 3,741 - 3,760 Resultados de 4,268 Para Buscar '"forestal"', tiempo de consulta: 0.09s Limitar resultados
  1. 3741
    Publicado 2020
    Tabla de Contenidos: “…Using bagging to improve prediction -- 10.1.3. Using random forests to further improve prediction -- 10.1.4. Gradient-boosted trees -- 10.1.5. …”
    Libro electrónico
  2. 3742
    por Peterson, David L.
    Publicado 2022
    Tabla de Contenidos: “…Intro -- Foreword -- Acknowledgments -- Disclaimer -- Contents -- 1 Assessing the State of Smoke Science -- 1.1 Recent Trends -- 1.2 Environmental and Social Context -- 1.3 Overview of This Assessment -- References -- 2 Fuels and Consumption -- 2.1 Introduction -- 2.1.1 Understanding How Fuels Contribute to Smoke -- 2.2 Wildland Fuels -- 2.2.1 Fuel Characteristics -- 2.2.2 Traditional Methods to Estimate Wildland Fuel Loadings -- 2.2.3 Emerging Technologies and Methods -- 2.3 Fuel Consumption -- 2.3.1 Indirect Estimates of Fuel Consumption -- 2.3.2 Direct Measures of Fuel Consumption -- 2.4 Gaps in Wildland Fuels Characterization -- 2.4.1 Scaling from Fine-Scale to Coarse-Scale Fuel Characterization -- 2.4.2 Challenges in Forest Floor Characterization -- 2.4.3 Modeling Spatial and Temporal Dynamics of Wildland Fuels -- 2.5 Vision for Improving Fuel Science in Support of Smoke Science -- 2.6 Science Delivery to Managers -- 2.7 Research Needs -- 2.8 Conclusions -- References -- 3 Fire Behavior and Heat Release as Source Conditions for Smoke Modeling -- 3.1 Introduction -- 3.2 Current State of Science -- 3.2.1 Representing Fire in Smoke Models -- 3.2.2 Remote Sensing -- 3.2.3 Effects of Management Actions -- 3.3 Gaps in Understanding the Link Between Fire Behavior and Plume Dynamics -- 3.3.1 Heat Release -- 3.3.2 Fire Spread -- 3.3.3 Plume Cores -- 3.4 Vision for Improving Smoke Science -- 3.5 Emerging Issues and Challenges -- 3.5.1 Magnitude of Fire and Smoke Impacts -- 3.5.2 Managing Fuels to Minimize Air Quality Impacts -- 3.5.3 Need for Dispersion Climatologies -- 3.5.4 When and Where is Coupled Fire-Atmosphere Modeling Needed? …”
    Libro electrónico
  3. 3743
    Publicado 2022
    Tabla de Contenidos: “…9.2.2 Evaluation Process -- 9.3 Question and Answer Model -- 9.3.1 Most Widely-used Question Types -- 9.4 A Short Introduction to AI and Machine Learning -- 9.5 Selection of Machine Learning Algorithms to address our Problem -- 9.5.1 Reinforced Learning (RL) -- 9.6 Evaluation Process -- 9.6.1 Question Delivery -- 9.6.2 Question Attributes -- 9.7 Evaluator States and Actions -- 9.8 Implementation -- 9.8.1 Listing 1 -- 9.8.2 Listing 2 -- 9.8.3 Implementation Details -- 9.8.4 Testing the Evaluator -- 9.8.5 TestCase Output -- 9.9 Conclusion -- References -- 10 Investigating Artificial Intelligence Usage for Revolution in E-Learning during COVID-19 -- 10.1 Introduction -- 10.2 Review of Existing Literature -- 10.3 Objective of the Study -- 10.4 Research Methodology -- 10.5 Data Analysis and Discussion -- 10.6 Implications and Conclusion -- 10.7 Limitation and Future Scope -- Acknowledgement -- References -- 11 Employee Churn Management Using AI -- 11.1 Introduction -- 11.2 Proposed Methodology -- 11.2.1 Dataset Review -- 11.3 Model Building -- 11.3.1 Train Test Split -- 11.3.2 Model Building -- 11.3.3 Random Forest Classifier -- 11.3.4 XGBoost -- 11.4 Comparison -- 11.4.1 AUC-ROC Curve -- 11.5 Conclusion -- References -- 12 Machine Learning: Beginning of a New Era in the Dominance of Statistical Methods of Forecasting -- 12.1 Introduction -- 12.2 Analyzing Prominent Studies -- 12.3 Tabulation of prominent studies forecasting Time Series Data using Machine Learnings Techniques -- 12.4 Conclusion -- References -- 13 Recurrent Neural Network-Based Long Short-Term Memory Deep Neural Network Model for Forex Prediction -- 13.1 Introduction -- 13.2 Related Work -- 13.3 Working Principle of LSTM -- 13.4 Results and Simulations Study -- 13.4.1 Data Preparation -- 13.4.2 Performance Measure -- 13.5 Results and Discussion -- 13.6 Conclusion -- References…”
    Libro electrónico
  4. 3744
    Publicado 2024
    Tabla de Contenidos: “…Chapter 13 Energy-Efficient Fog-Assisted System for Monitoring Diabetic Patients with Cardiovascular Disease -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 Architectural Design of the Proposed Framework -- 13.4 Fog Services -- 13.4.1 Information Processing -- 13.4.2 Algorithm for Extracting Heart Rate and QT Interval -- 13.4.3 Activity Status Categorization and Fall Detection Algorithm -- 13.4.4 Interoperability -- 13.4.5 Security -- 13.4.6 Implementation of the Framework and Testbed Scenario -- 13.4.7 Sensor Layer Implementation -- 13.5 Smart Gateway and Fog Services Implementation -- 13.6 Cloud Servers -- 13.7 Experimental Results -- 13.8 Future Directions -- 13.9 Conclusion -- References -- Chapter 14 Medical Appliances Energy Consumption Prediction Using Various Machine Learning Algorithms -- 14.1 Introduction -- 14.2 Literature Review -- 14.3 Methodology -- 14.3.1 Dataset -- 14.3.2 Data Analysis and Pre-Processing -- 14.3.3 Descriptive Statistics -- 14.3.4 Correlation Matrix -- 14.3.5 Feature Selection -- 14.3.6 Data Scaling -- 14.4 Machine Learning Algorithms Used -- 14.4.1 Multiple Linear Regressor -- 14.4.2 Kernel Ridge Regression -- 14.4.3 Stochastic Gradient Descent (SGD) -- 14.4.4 Support Vector Machine (Support Vector Regression) -- 14.4.5 K-Nearest Neighbor Regressor (KNN) -- 14.4.6 Random Forest Regressor -- 14.4.7 Extremely Randomized Trees Regressor (Extra Trees Regressor) -- 14.4.8 Gradient Boosting Machine/Regressor (GBM) -- 14.4.9 Light GBM (LGBM) -- 14.4.10 Multilayer Perceptron Regressor (MLP) -- 14.4.11 Implementation -- 14.5 Results and Analysis -- 14.6 Model Analysis -- 14.7 Conclusion and Future Work -- References -- Part 3: Future of Blockchain and Deep Learning -- Chapter 15 Deep Learning-Based Smart e-Healthcare for Critical Babies in Hospitals -- 15.1 Introduction -- 15.2 Literature Survey -- 15.2.1 Methodology…”
    Libro electrónico
  5. 3745
    Publicado 2023
    Tabla de Contenidos: “…-- 13.3 Corporations' Use Of Machine Learning To Strengthen Their Cyber Security Systems -- 13.4 Cyber Attack/Cyber Security Threats And Attacks -- 13.4.1 Malware -- 13.4.2 Data Breach -- 13.4.3 Structured Query Language Injection (SQL-I) -- 13.4.4 Cross-Site Scripting (XSS) -- 13.4.5 Denial-Of-Service (DOS) Attack -- 13.4.6 Insider Threats -- 13.4.7 Birthday Attack -- 13.4.8 Network Intrusions -- 13.4.9 Impersonation Attacks -- 13.4.10 DDoS Attacks Detection On Online Systems -- 13.5 Different Machine Learning Techniques In Cyber Security -- 13.5.1 Support Vector Machine (SVM) -- 13.5.2 K-Nearest Neighbor (KNN) -- 13.5.3 Naïve Bayes -- 13.5.4 Decision Tree -- 13.5.5 Random Forest (RF) -- 13.5.6 Multilayer Perceptron (MLP) -- 13.6 Application Of Machine Learning -- 13.6.1 ML in Aviation Industry -- 13.6.2 Cyber ML Under Cyber Security Monitoring -- 13.6.3 Battery Energy Storage System (BESS) Cyber Attack Mitigation -- 13.6.4 Energy-Based Cyber Attack Detection in Large-Scale Smart Grids -- 13.6.5 IDS for Internet of Vehicles (IoV) -- 13.7 Deep Learning Techniques In Cyber Security -- 13.7.1 Deep Auto-Encoder -- 13.7.2 Convolutional Neural Networks (CNN) -- 13.7.3 Recurrent Neural Networks (RNNs) -- 13.7.4 Deep Neural Networks (DNNs) -- 13.7.5 Generative Adversarial Networks (GANs) -- 13.7.6 Restricted Boltzmann Machine (RBM) -- 13.7.7 Deep Belief Network (DBN)…”
    Libro electrónico
  6. 3746
    Publicado 2024
    Tabla de Contenidos: “…Conclusion -- References -- 3 - Prediction of breast cancer diagnosis using random forest classifier -- 1. Introduction -- 2. Data set used -- 3. …”
    Libro electrónico
  7. 3747
    por Dey, Arindam
    Publicado 2024
    Tabla de Contenidos: “…13.5.4.1 Artificial Neural Networks (ANNs) -- 13.5.4.2 Decision Trees -- 13.5.4.3 Support Vector Machines (SVMs) -- 13.5.4.4 Random Forest -- 13.5.4.5 Gaussian Process -- 13.6 Case Studies of ML-Based BMS Applications in Industry -- 13.6.1 Machine Learning Approach to Predict SOH of Li-Ion Batteries -- 13.6.2 Anomaly Detection in Battery Management System Using Machine Learning -- 13.6.3 Optimization of Battery Life Cycle Using Machine Learning -- 13.6.4 Prediction of Remaining Useful Life Using Machine Learning -- 13.6.5 Fault Diagnosis of Battery Management System Using Machine Learning -- 13.6.6 Battery Parameter Estimation Using Machine Learning -- 13.6.7 Optimization of Battery Charging Using Machine Learning -- 13.6.8 ML Approach to Estimate State of Charge -- 13.6.9 Battery Capacity Estimation Using ML Approach -- 13.6.10 Anomaly Detection in Batteries Using Machine Learning -- 13.6.11 ML-Based BMS for Li-Ion Batteries -- 13.6.12 Battery Management System Based on Deep Learning for Electric Vehicles -- 13.6.13 A Review of ML Approaches for BMS -- 13.6.14 Battery Management Systems Using Machine Learning Techniques -- 13.6.15 Machine Learning for Lithium-Ion Battery Management: Challenges and Opportunities -- 13.6.16 An ML-Based BMS for Hybrid EVs -- 13.6.17 Battery Management System for EVs Using ML Techniques -- 13.6.18 A Hybrid BMS Using Machine Learning Techniques -- 13.7 Challenges -- 13.8 Conclusion -- References -- Chapter 14 ML Applications in Healthcare -- 14.1 Introduction -- 14.1.1 Supervised Learning -- 14.1.2 Unsupervised Learning -- 14.1.3 Semi-Supervised Learning -- 14.1.4 Reinforcement Learning -- 14.2 Applications of Machine Learning in Health Sciences -- 14.2.1 Diagnosis and Prediction of Disease -- 14.2.1.1 Predicting Thyroid Disease -- 14.2.1.2 Predicting Cardiovascular Disease -- 14.2.1.3 Predicting Cancer…”
    Libro electrónico
  8. 3748
    por Srivastava, Sumit
    Publicado 2024
    Tabla de Contenidos: “…4.3.7 K-Means Method -- 4.3.8 Watershed Method -- 4.3.9 Comparison of Different Segmentation Techniques Based on the Advantages and Disadvantages -- 4.3.10 Comparison of Different Segmentation Techniques Based on Accuracy -- 4.3.11 Comparison of Region Based and Threshold Based Segmentation Techniques Based on Different Parameters -- 4.4 Machine Learning -- 4.4.1 Supervised Learning -- 4.4.2 Unsupervised Learning -- 4.4.3 Reinforcement Learning -- 4.4.4 K-Nearest Neighbour (KNN) -- 4.4.5 Support Vector Machine (SVM) -- 4.4.6 Random Forest -- 4.5 Deep Learning (DL) -- 4.5.1 Convolutional Neural Networks (CNN) -- 4.5.1.1 Convolution Layer -- 4.5.1.2 Pooling Layer -- 4.5.1.3 Architecture of CNN -- 4.5.1.4 Comparison of Different Variations of CNN Techniques -- 4.5.2 Long Short-Term Memory (LSTM) -- 4.5.3 Artificial Neural Network (ANN) -- 4.5.4 Accuracy of Different Models Discussed Above -- 4.5.5 Accuracy of Other Different Techniques Being Used -- 4.6 Performance Metrics -- 4.6.1 Accuracy -- 4.6.2 Precision -- 4.6.3 Recall -- 4.6.4 Specificity -- 4.6.5 F1-Measure -- 4.7 Method Wise Trend of Using Techniques for Detection of Brain Tumor -- 4.8 Conclusion -- References -- Chapter 5 Advancements in Tumor Detection and Classification -- 5.1 Introduction -- 5.2 Imaging Techniques Used in Tumor Detection and Classification -- 5.2.1 X-Ray -- 5.2.2 CT Scan -- 5.2.3 MRI -- 5.2.4 Ultrasound -- 5.3 Molecular Biology Techniques -- 5.3.1 PCR -- 5.3.2 FISH -- 5.3.3 Next-Generation Sequencing -- 5.3.4 Western Blotting -- 5.4 Machine Learning and Artificial Intelligence -- 5.5 Tumor Classification -- 5.5.1 TNM Staging System -- 5.5.2 Histological Grading -- 5.5.3 Molecular Subtyping -- 5.6 Challenges and Future Directions -- References -- Chapter 6 Classification of Brain Tumor Using Machine Learning Techniques: A Comparative Study -- 6.1 Introduction…”
    Libro electrónico
  9. 3749
    Capítulo
  10. 3750
    por Burack, Elmer H.
    Publicado 1987
    Microfilme
  11. 3751
    por Mailer, Norman
    Publicado 2007
    Libro
  12. 3752
    por Krauss, Nicole, 1974-
    Publicado 2019
    Libro
  13. 3753
    Publicado 2004
    “…The Bengal (Indian) tiger Panthera tigris tigris, distributed throughout the humid forests and grasslands of Bangladesh, Bhutan, China, India and Nepal. …”
    DVD
  14. 3754
    por Torres Monteiro, Alina
    Publicado 2000
    Otros
  15. 3755
    por Hoque, Zahirul
    Publicado 2003
    Libro
  16. 3756
    Publicado 2018
    Libro electrónico
  17. 3757
    por Baskett, Forest
    Publicado 1985
    Libro electrónico
  18. 3758
    por Oard, Michael
    Publicado 2000
    Libro
  19. 3759
    por La Nicollière, Stéphane de
    Publicado 1865
    Libro
  20. 3760
    por Sherwood, Robert E., 1896-1955
    Publicado 1944
    Libro