Mostrando 3,721 - 3,740 Resultados de 4,268 Para Buscar '"forestal"', tiempo de consulta: 0.10s Limitar resultados
  1. 3721
    991006131039706719
  2. 3722
    Publicado 1956
    Libro
  3. 3723
    Publicado 2011
    “…A place where rivers, forests and savannas play a never-ending game with people. …”
    Ver más información
    DVD
  4. 3724
    por Forest, Aimé
    Publicado 1956
    Libro
  5. 3725
    por Wagen, Lynn van der
    Publicado 2007
    Libro
  6. 3726
    por Bates, Marston
    Publicado 1964
    Libro
  7. 3727
    por Gitt, Werner, 1937-
    Publicado 2007
    Sumario
    Libro
  8. 3728
    por Kennedy, George
    Publicado 1993
    Libro
  9. 3729
    por FOREST, Aimé
    Publicado 1956
    Libro
  10. 3730
    Publicado 2018
    “…It also plays a key role in the biology and ecology of forest trees, affecting growth, water and nutrient absorption and protection against soil-borne pathogens. …”
    Libro electrónico
  11. 3731
    Publicado 2021
    “…In Africa, tree plantations are likely to be developed for several reasons: restoration of production capacities and services provided by natural forests, enhancement of agroforestry lands, easier harvesting of wood and non-wood forest products, etc. …”
    Libro electrónico
  12. 3732
    Publicado 2021
    Tabla de Contenidos: “…10.6.2 Data Flow Diagrams -- 10.6.2.1 Doctors -- 10.6.2.2 Patient -- 10.6.2.3 Transaction Flow -- 10.7 Performance Evaluation -- 10.7.1 Performance of the Proposed Model -- 10.7.2 Performance Comparison -- 10.8 Conclusions and Future Caveats -- References -- Chapter 11: AI-Aided Secured ECG Live Edge Monitoring System with a Practical Use-Case -- 11.1 Introduction -- 11.1.1 Background -- 11.1.2 Problem Statement -- 11.1.3 Objective and Scope -- 11.2 Related Work -- 11.3 Proposed AI-Based System Architecture -- 11.3.1 Block Diagram -- 11.3.2 Data Collection and Pre-Processing Steps -- 11.3.3 Detecting Heart Abnormalities Using AI-Aided Techniques -- 11.4 Considered Smart ECG Monitoring System -- 11.4.1 Edge Hardware Components -- 11.4.1.1 System-on-a-Chip (SoC) Model -- 11.4.1.2 IoT Sensor for Heart Rate Data Acquisition -- 11.4.1.3 Microprocessor and Analog to Digital Converter -- 11.4.2 AI-Logic Component -- 11.4.2.1 Decision Tree -- 11.4.2.2 Random Forest -- 11.4.2.3 ANN -- 11.4.2.4 CNN -- 11.5 Bio-Authentication Application of the Considered ECG Monitoring System for Specific Use-Cases -- 11.6 Performance Evaluation -- 11.6.1 Supraventricular Arrhythmia Classification -- 11.6.2 Authorized User Classification for Bio-Authentication System -- 11.7 Challenges Involved with the Proposed System -- Limitations -- 11.8 Conclusion and Future Scope -- References -- Section III -- Chapter 12: Application of Unmanned Aerial Vehicles in Wireless Networks: Mobile Edge Computing and Caching -- 12.1 Introduction -- 12.1.1 Chapter Roadmap -- 12.2 Literature Review -- 12.3 Description of Caching and Mobile Edge Computing -- 12.3.1 Overview of Caching -- 12.3.1.1 Advantages -- 12.3.1.2 Disadvantages -- 12.3.2 Overview of Mobile Edge Computing -- 12.3.2.1 Advantages -- 12.3.2.2 Disadvantages -- 12.4 Layering of UAV-Based MEC Architecture…”
    Libro electrónico
  13. 3733
    Publicado 2021
    Tabla de Contenidos: “…-- 3.1.2 Softmax and probability distributions -- 3.1.3 Interpreting the success of active learning -- 3.2 Algorithms for uncertainty sampling -- 3.2.1 Least confidence sampling -- 3.2.2 Margin of confidence sampling -- 3.2.3 Ratio sampling -- 3.2.4 Entropy (classification entropy) -- 3.2.5 A deep dive on entropy -- 3.3 Identifying when different types of models are confused -- 3.3.1 Uncertainty sampling with logistic regression and MaxEnt models -- 3.3.2 Uncertainty sampling with SVMs -- 3.3.3 Uncertainty sampling with Bayesian models -- 3.3.4 Uncertainty sampling with decision trees and random forests -- 3.4 Measuring uncertainty across multiple predictions -- 3.4.1 Uncertainty sampling with ensemble models -- 3.4.2 Query by Committee and dropouts -- 3.4.3 The difference between aleatoric and epistemic uncertainty -- 3.4.4 Multilabeled and continuous value classification -- 3.5 Selecting the right number of items for human review -- 3.5.1 Budget-constrained uncertainty sampling -- 3.5.2 Time-constrained uncertainty sampling -- 3.5.3 When do I stop if I'm not time- or budget-constrained? …”
    Libro electrónico
  14. 3734
    Publicado 2021
    Tabla de Contenidos: “…1.13.6 Applying Cognition to Develop Health and Wellness -- 1.13.7 Welltok -- 1.13.8 CaféWell Concierge in Action -- 1.14 Advantages of Cognitive Computing -- 1.15 Features of Cognitive Computing -- 1.16 Limitations of Cognitive Computing -- 1.17 Conclusion -- References -- 2 Machine Learning and Big Data in Cyber-Physical System: Methods, Applications and Challenges -- 2.1 Introduction -- 2.2 Cyber-Physical System Architecture -- 2.3 Human-in-the-Loop Cyber-Physical Systems (HiLCPS) -- 2.4 Machine Learning Applications in CPS -- 2.4.1 K-Nearest Neighbors (K-NN) in CPS -- 2.4.2 Support Vector Machine (SVM) in CPS -- 2.4.3 Random Forest (RF) in CPS -- 2.4.4 Decision Trees (DT) in CPS -- 2.4.5 Linear Regression (LR) in CPS -- 2.4.6 Multi-Layer Perceptron (MLP) in CPS -- 2.4.7 Naive Bayes (NB) in CPS -- 2.5 Use of IoT in CPS -- 2.6 Use of Big Data in CPS -- 2.7 Critical Analysis -- 2.8 Conclusion -- References -- 3 HemoSmart: A Non-Invasive Device and Mobile App for Anemia Detection -- 3.1 Introduction -- 3.1.1 Background -- 3.1.2 Research Objectives -- 3.1.3 Research Approach -- 3.1.4 Limitations -- 3.2 Literature Review -- 3.3 Methodology -- 3.3.1 Methodological Approach -- 3.3.2 Methods of Analysis -- 3.4 Results -- 3.4.1 Impact of Project Outcomes -- 3.4.2 Results Obtained During the Methodology -- 3.5 Discussion -- 3.6 Originality and Innovativeness of the Research -- 3.6.1 Validation and Quality Control of Methods -- 3.6.2 Cost-Effectiveness of the Research -- 3.7 Conclusion -- References -- 4 Advanced Cognitive Models and Algorithms -- 4.1 Introduction -- 4.2 Microsoft Azure Cognitive Model -- 4.2.1 AI Services Broaden in Microsoft Azure -- 4.3 IBM Watson Cognitive Analytics -- 4.3.1 Cognitive Computing -- 4.3.2 Defining Cognitive Computing via IBM Watson Interface -- 4.3.3 IBM Watson Analytics -- 4.4 Natural Language Modeling…”
    Libro electrónico
  15. 3735
    Publicado 2021
    Tabla de Contenidos: “…3.4 Machine Learning Algorithms -- 3.4.1 Linear Regression -- 3.4.2 Logistic Regression -- 3.4.3 K-NN or K Nearest Neighbor -- 3.4.4 Decision Tree -- 3.4.5 Random Forest -- 3.5 Analysis and Prediction of COVID-19 Data -- 3.5.1 Methodology Adopted -- 3.6 Analysis Using Machine Learning Models -- 3.6.1 Splitting of Data into Training and Testing Data Set -- 3.6.2 Training of Machine Learning Models -- 3.6.3 Calculating the Score -- 3.7 Conclusion &amp -- Future Scope -- References -- 4 Rapid Forecasting of Pandemic Outbreak Using Machine Learning -- 4.1 Introduction -- 4.2 Effect of COVID-19 on Different Sections of Society -- 4.2.1 Effect of COVID-19 on Mental Health of Elder People -- 4.2.2 Effect of COVID-19 on our Environment -- 4.2.3 Effect of COVID-19 on International Allies and Healthcare -- 4.2.4 Therapeutic Approaches Adopted by Different Countries to Combat COVID-19 -- 4.2.5 Effect of COVID-19 on Labor Migrants -- 4.2.6 Impact of COVID-19 on our Economy -- 4.3 Definition and Types of Machine Learning -- 4.3.1 Machine Learning &amp -- Its Types -- 4.3.2 Applications of Machine Learning -- 4.4 Machine Learning Approaches for COVID-19 -- 4.4.1 Enabling Organizations to Regulate and Scale -- 4.4.2 Understanding About COVID-19 Infections -- 4.4.3 Gearing Up Study and Finding Treatments -- 4.4.4 Predicting Treatment and Healing Outcomes -- 4.4.5 Testing Patients and Diagnosing COVID-19 -- References -- 5 Rapid Forecasting of Pandemic Outbreak Using Machine Learning: The Case of COVID-19 -- 5.1 Introduction -- 5.2 Related Work -- 5.3 Suggested Methodology -- 5.4 Models in Epidemiology -- 5.4.1 Bayesian Inference Models -- 5.5 Particle Filtering Algorithm -- 5.6 MCM Model Implementation -- 5.6.1 Reproduction Number -- 5.7 Diagnosis of COVID-19 -- 5.7.1 Predicting Outbreaks Through Social Media Analysis -- 5.8 Conclusion -- References…”
    Libro electrónico
  16. 3736
    Publicado 2017
    Tabla de Contenidos: “…2.3.3.1 Ground object monitoring in the transmission line corridor -- 2.3.3.2 Geological disaster monitoring for the transmission line corridor -- 2.3.3.3 Monitoring the meteorological disasters of transmission lines corridors -- 2.3.3.4 Transmission line corridor forest fire monitoring -- 2.3.4 Wide Area Transmission Lines Monitoring Prospect Based on Satellite Remote Sensing Technology -- References -- 3 Tour inspection technology of transmission lines -- 3.1 Conventional Tour Inspection and its Classification -- 3.1.1 Regular Tour Inspection of Lines -- 3.1.2 Special tour inspection of lines -- 3.1.3 Fault Tour Inspection of Lines -- 3.1.4 On-the-Tower Tour Inspection of Lines -- 3.2 Main Contents of Tour Inspection of Lines -- 3.2.1 Environments Along the Lines -- 3.2.2 Towers, Guy Wires, and Foundations -- 3.2.3 Conductors and Ground Wires -- 3.2.4 Insulators and Fittings -- 3.2.5 Lightning Protection Facilities and Grounding Devices -- 3.2.6 Accessories and Other Facilities -- 3.3 Helicopter Tour Inspection Technology -- 3.3.1 Model of Line Inspection Helicopter -- 3.3.2 Line Inspection Heliborne Equipment -- 3.3.2.1 Infrared thermal imaging equipment -- 3.3.2.2 Ultraviolet (UV) imaging equipment -- 3.3.2.3 Heliborne laser radar -- 3.3.3 Tour Inspection Items -- 3.3.3.1 Regular inspection -- 3.3.3.2 Equipment fault detection -- 3.3.3.3 Vegetation management near transmission lines -- 3.3.3.4 The monitoring and management of the lines' operational state -- 3.3.3.5 Assessment of the electromagnetic environment of transmission lines -- 3.3.3.6 Equipment management of transmission lines -- 3.3.4 Helicopter Tour Inspection Process -- 3.3.4.1 Preparation for patrol -- 3.3.4.2 The patrol process and main defects found -- 3.4 Robot Tour Inspection Technology -- 3.4.1 Characteristics of Robot Tour Inspection…”
    Libro electrónico
  17. 3737
    Publicado 2019
    Tabla de Contenidos: “…4.4.2 How to Implement -- Step 1: Data Preparation -- Step 2: Modeling Operator and Parameters -- Step 3: Evaluation -- Step 4: Execution and Interpretation -- 4.4.3 Conclusion -- 4.5 Artificial Neural Networks -- 4.5.1 How It Works -- Step 1: Determine the Topology and Activation Function -- Step 2: Initiation -- Step 3: Calculating Error -- Step 4: Weight Adjustment -- 4.5.2 How to Implement -- Step 1: Data Preparation -- Step 2: Modeling Operator and Parameters -- Step 3: Evaluation -- Step 4: Execution and Interpretation -- 4.5.3 Conclusion -- 4.6 Support Vector Machines -- Concept and Terminology -- 4.6.1 How It Works -- 4.6.2 How to Implement -- Implementation 1: Linearly Separable Dataset -- Step 1: Data Preparation -- Step 2: Modeling Operator and Parameters -- Step 3: Process Execution and Interpretation -- Example 2: Linearly Non-Separable Dataset -- Step 1: Data Preparation -- Step 2: Modeling Operator and Parameters -- Step 3: Execution and Interpretation -- Parameter Settings -- 4.6.3 Conclusion -- 4.7 Ensemble Learners -- Wisdom of the Crowd -- 4.7.1 How It Works -- Achieving the Conditions for Ensemble Modeling -- 4.7.2 How to Implement -- Ensemble by Voting -- Bootstrap Aggregating or Bagging -- Implementation -- Boosting -- AdaBoost -- Implementation -- Random Forest -- Implementation -- 4.7.3 Conclusion -- References -- 5 Regression Methods -- 5.1 Linear Regression -- 5.1.1 How it Works -- 5.1.2 How to Implement -- Step 1: Data Preparation -- Step 2: Model Building -- Step 3: Execution and Interpretation -- Step 4: Application to Unseen Test Data -- 5.1.3 Checkpoints -- 5.2 Logistic Regression -- 5.2.1 How It Works -- How Does Logistic Regression Find the Sigmoid Curve? …”
    Libro electrónico
  18. 3738
    por Bijalwan, Anchit
    Publicado 2024
    Tabla de Contenidos: “…Chapter 10 Research Design Machine Maintenance Management Software Module for Garment Industry -- 10.1 Introduction -- 10.2 Building a Maintenance Process for Garment Industry Machine -- 10.2.1 Maintenance Process for Machinery -- 10.2.2 Information in the Maintenance Management Machine Records -- 10.3 Designing a "Machine Maintenance Management" Software Module -- 10.3.1 Database Design -- 10.3.2 Designing a "Machine Maintenance Management" Software Module -- 10.4 Conclusion -- References -- Part 3: Adoption of ICT for Digitalization, Artificial Intelligence, and Machine Learning -- Chapter 11 Performance Comparison of Prediction of a Hydraulic Jump Depth in a Channel Using Various Machine Learning Models -- Nomenclature -- 11.1 Introduction -- 11.2 Related Works -- 11.3 Materials and Methods -- 11.3.1 Equation of the Hydraulic Jump -- 11.3.2 Data Used in the Study -- 11.4 Machine Learning Models -- 11.4.1 Features of Machine Learning Models -- 11.4.2 Support Vector Machine (SVM) -- 11.4.3 Decision Tree (DT) -- 11.4.4 Random Forest (RF) -- 11.4.5 Artificial Neural Network (ANN) -- 11.5 Results and Discussion -- 11.6 Conclusions -- References -- Chapter 12 Creating a Video from Facial Image Using Conditional Generative Adversarial Network -- 12.1 Introduction -- 12.2 Related Works -- 12.3 Methodology -- 12.3.1 The Proposed Model -- 12.3.2 Conditional Generative Adversarial Network (cGAN) -- 12.3.3 Hidden Affine Transformation -- 12.4 Experiments -- 12.4.1 Dataset -- 12.4.2 Dlib -- 12.4.3 Evaluation -- 12.4.4 Result -- 12.5 Conclusion -- References -- Chapter 13 Deep Learning Framework for Detecting, Classifying, and Recognizing Invoice Metadata -- 13.1 Introduction -- 13.2 Related Works -- 13.3 Invoice Data Analysis -- 13.4 Proposed Method -- 13.5 Experiments -- 13.6 Conclusion and Perspectives -- References…”
    Libro electrónico
  19. 3739
    por Tripathi, Padmesh
    Publicado 2024
    Tabla de Contenidos: “…Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Elevating Surveillance Integrity-Mathematical Insights into Background Subtraction in Image Processing -- 1.1 Introduction -- 1.2 Background Subtraction -- 1.3 Mathematics Behind Background Subtraction -- 1.4 Gaussian Mixture Model -- 1.4.1 Gaussian Mixture Model (GMM) Algorithm for Background Subtraction -- 1.4.2 Gaussian Mixture Model (GMM) Algorithm - A Simple Example -- 1.5 Principal Component Analysis -- 1.6 Applications -- 1.6.1 Military Surveillance -- 1.6.2 Visual Observation of Animals in Forests -- 1.6.3 Marine Surveillance -- 1.6.4 Defense Surveillance Systems -- 1.7 Conclusion -- References -- Chapter 2 Machine Learning and Artificial Intelligence in the Detection of Moving Objects Using Image Processing -- 2.1 Introduction -- 2.2 Moving Object Detection -- 2.3 Envisaging the Object Detection -- 2.3.1 Filtering Algorithm -- 2.3.2 Identification of Object Detection in Bad Weather Circumstance -- 2.3.3 Color Clustering -- 2.3.4 Dangerous Animal Detection -- 2.3.5 UAV Video End-of-Line Detection and Tracking in Live Traffic -- 2.3.5.1 Contextual Detection -- 2.3.5.2 Calculation of Location of a Car -- 2.3.6 Estimation of Crowd -- 2.3.7 Parking Lot Management -- 2.3.8 Public Automatic Anomaly Detection Systems -- 2.3.9 Modification of Robust Principal Component Analysis -- 2.3.10 Logistics Automation -- 2.3.11 Detection of Criminal Behavior in Humans -- 2.3.12 UAV Collision Avoidance and Control System -- 2.3.13 An Overview of Potato Growth Stages -- 2.4 Conclusion -- References -- Chapter 3 Machine Learning and Imaging-Based Vehicle Classification for Traffic Monitoring Systems -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Data Preparation -- 3.2.2 Model Training -- 3.2.3 Hardware and Software Configuration -- 3.3 Result -- 3.4 Conclusion…”
    Libro electrónico
  20. 3740
    Publicado 2023
    Tabla de Contenidos: “…8.2 Methodology -- 8.3 AI-Based Predictive Modeling -- 8.3.1 Linear Regression -- 8.3.2 Random Forests -- 8.3.3 XGBoost -- 8.3.4 SVM -- 8.4 Performance Indices -- 8.4.1 Root Mean Squared Error (RMSE) -- 8.4.2 Mean Squared Error (MSE) -- 8.4.3 R2 (R-Squared) -- 8.5 Results and Discussion -- 8.5.1 Key Performance Metrics (KPIs) During the Model Training Phase -- 8.5.2 Key Performance Index Metrics (KPIs) During the Model Testing Phase -- 8.5.3 K Cross Fold Validation -- 8.6 Conclusions -- References -- Chapter 9 Performance Comparison of Differential Evolutionary Algorithm-Based Contour Detection to Monocular Depth Estimation for Elevation Classification in 2D Drone-Based Imagery -- 9.1 Introduction -- 9.2 Literature Survey -- 9.3 Research Methodology -- 9.3.1 Dataset and Metrics -- 9.4 Result and Discussion -- 9.5 Conclusion -- References -- Chapter 10 Bioinspired MOPSO-Based Power Allocation for Energy Efficiency and Spectral Efficiency Trade-Off in Downlink NOMA -- 10.1 Introduction -- 10.2 System Model -- 10.3 User Clustering -- 10.4 Optimal Power Allocation for EE-SE Tradeoff -- 10.4.1 Multiobjective Optimization Problem -- 10.4.2 Multiobjective PSO -- 10.4.3 MOPSO Algorithm for EE-SE Trade-Off in Downlink NOMA -- 10.5 Numerical Results -- 10.6 Conclusion -- References -- Chapter 11 Performances of Machine Learning Models and Featurization Techniques on Amazon Fine Food Reviews -- 11.1 Introduction -- 11.1.1 Related Work -- 11.2 Materials and Methods -- 11.2.1 Data Cleaning and Pre-Processing -- 11.2.2 Feature Extraction -- 11.2.3 Classifiers -- 11.3 Results and Experiments -- 11.4 Conclusion -- References -- Chapter 12 Optimization of Cutting Parameters for Turning by Using Genetic Algorithm -- 12.1 Introduction -- 12.2 Genetic Algorithm GA: An Evolutionary Computational Technique -- 12.3 Design of Multiobjective Optimization Problem…”
    Libro electrónico