Mostrando 3,581 - 3,600 Resultados de 4,268 Para Buscar '"forestal"', tiempo de consulta: 0.10s Limitar resultados
  1. 3581
    Publicado 2017
    Tabla de Contenidos: “…. -- Implementing random forest regression -- Getting ready -- How to do it…”
    Libro electrónico
  2. 3582
    Publicado 2024
    Tabla de Contenidos: “…Real-life applications for labeling audio data -- Audio data fundamentals -- Hands-on with analyzing audio data -- Example code for loading and analyzing sample audio file -- Best practices for audio format conversion -- Example code for audio data cleaning -- Extracting properties from audio data -- Tempo -- Chroma features -- Mel-frequency cepstral coefficients (MFCCs) -- Zero-crossing rate -- Spectral contrast -- Considerations for extracting properties -- Visualizing audio data with matplotlib and Librosa -- Waveform visualization -- Loudness visualization -- Spectrogram visualization -- Mel spectrogram visualization -- Considerations for visualizations -- Ethical implications of audio data -- Recent advances in audio data analysis -- Troubleshooting common issues during data analysis -- Troubleshooting common installation issues for audio libraries -- Summary -- Chapter 11: Labeling Audio Data -- Technical requirements -- Downloading FFmpeg -- Azure Machine Learning -- Real-time voice classification with Random Forest -- Transcribing audio using the OpenAI Whisper model -- Step 1 - importing the Whisper model -- Step 2 - loading the base Whisper model -- Step 3 - setting up FFmpeg -- Step 4 - transcribing the YouTube audio using the Whisper model -- Classifying a transcription using Hugging Face transformers -- Hands-on - labeling audio data using a CNN -- Exploring audio data augmentation -- Introducing Azure Cognitive Services - the speech service -- Creating an Azure Speech service -- Speech to text -- Speech translation -- Summary -- Chapter 12: Hands-On Exploring Data Labeling Tools -- Technical requirements -- Azure Machine Learning data labeling -- Label Studio -- pyOpenAnnotate -- Data labeling using Azure Machine Learning -- Benefits of data labeling with Azure Machine Learning -- Data labeling steps using Azure Machine Learning…”
    Libro electrónico
  3. 3583
    Publicado 2024
    Tabla de Contenidos: “…10.3 Issues, Challenges and Problem Statement -- 10.3.1 Time and Memory Constraints -- 10.3.2 Class Imbalance -- 10.3.3 Concept Drift -- 10.4 Cybersecurity and IoT -- 10.5 Conclusion -- Chapter 11 A Study on Image Detection and Extraction to Estimate Distracted Drivers Using CNN and IoT -- 11.1 Introduction -- 11.2 Motivations -- 11.3 Literature Survey or Related Work -- 11.4 Existing System -- 11.5 Methodology and Objectives -- 11.5.1 Device Initialisation Module -- 11.5.2 Drowsiness Detection Module -- 11.5.3 Alert Module -- 11.6 Proposed System -- 11.7 Face Detection Using OpenCV -- 11.8 Search Strategy -- 11.9 Conclusion -- 11.10 Future Enhancement -- Chapter 12 Social Engineering: Cyberattacks, Countermeasures, and Conclusions -- 12.1 Introduction -- 12.2 Case Study on Social Engg Attack-IBMReport [25] -- 12.2.1 The Cost of Average Social Engineering-Related Breach -- 12.3 Methodology and Detection -- 12.3.1 Social Engineering Toolkit for SMS Spoofing -- 12.3.2 SMS Spam Message Detection with Term Frequency-Inverse Document Frequency (TF-IDF) and Random Forest Algorithm -- 12.4 Results -- 12.5 Conclusion -- 12.6 Acknowledgment -- Index…”
    Libro electrónico
  4. 3584
    por Rothman, Denis
    Publicado 2020
    Tabla de Contenidos: “…Approval of the design matrix -- Implementing a k-means clustering solution -- The vision -- The data -- The strategy -- The k-means clustering program -- The mathematical definition of k-means clustering -- The Python program -- Saving and loading the model -- Analyzing the results -- Bot virtual clusters as a solution -- The limits of the implementation of the k-means clustering algorithm -- Summary -- Questions -- Further reading -- Chapter 5: How to Use Decision Trees to Enhance K-Means Clustering -- Unsupervised learning with KMC with large datasets -- Identifying the difficulty of the problem -- NP-hard - the meaning of P -- NP-hard - the meaning of non-deterministic -- Implementing random sampling with mini-batches -- Using the LLN -- The CLT -- Using a Monte Carlo estimator -- Trying to train the full training dataset -- Training a random sample of the training dataset -- Shuffling as another way to perform random sampling -- Chaining supervised learning to verify unsupervised learning -- Preprocessing raw data -- A pipeline of scripts and ML algorithms -- Step 1 - training and exporting data from an unsupervised ML algorithm -- Step 2 - training a decision tree -- Step 3 - a continuous cycle of KMC chained to a decision tree -- Random forests as an alternative to decision trees -- Summary -- Questions -- Further reading -- Chapter 6: Innovating AI with Google Translate -- Understanding innovation and disruption in AI -- Is AI disruptive? …”
    Libro electrónico
  5. 3585
    Publicado 2023
    Tabla de Contenidos: “…Data Governance and Digital Trade in India: Losing Sight of the Forest for the Trees? -- I. Introduction -- II. Data Governance in India: Multiple Narratives, Multiple Frameworks -- A. …”
    Libro electrónico
  6. 3586
    por Lantz, Brett
    Publicado 2013
    Tabla de Contenidos:
    Libro electrónico
  7. 3587
    Publicado 2018
    Tabla de Contenidos: “…Current Procedural Terminology (CPT) -- Logical Observation Identifiers Names and Codes (LOINC) -- National Drug Code (NDC) -- Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) -- Breaking down healthcare analytics -- Population -- Medical task -- Screening -- Diagnosis -- Outcome/Prognosis -- Response to treatment -- Data format -- Structured -- Unstructured -- Imaging -- Other data format -- Disease -- Acute versus chronic diseases -- Cancer -- Other diseases -- Putting it all together - specifying a use case -- Summary -- References and further reading -- Chapter 3: Machine Learning Foundations -- Model frameworks for medical decision making -- Tree-like reasoning -- Categorical reasoning with algorithms and trees -- Corresponding machine learning algorithms - decision tree and random forest -- Probabilistic reasoning and Bayes theorem -- Using Bayes theorem for calculating clinical probabilities -- Calculating the baseline MI probability -- 2 x 2 contingency table for chest pain and myocardial infarction -- Interpreting the contingency table and calculating sensitivity and specificity -- Calculating likelihood ratios for chest pain (+ and -) -- Calculating the post-test probability of MI given the presence of chest pain -- Corresponding machine learning algorithm - the Naive Bayes Classifier -- Criterion tables and the weighted sum approach -- Criterion tables -- Corresponding machine learning algorithms - linear and logistic regression -- Pattern association and neural networks -- Complex clinical reasoning -- Corresponding machine learning algorithm - neural networks and deep learning -- Machine learning pipeline -- Loading the data -- Cleaning and preprocessing the data -- Aggregating data -- Parsing data -- Converting types -- Dealing with missing data -- Exploring and visualizing the data -- Selecting features…”
    Libro electrónico
  8. 3588
    Publicado 2022
    Tabla de Contenidos: “…3.2.4 Rehabilitation Robot for Gait Training -- 3.3 Solutions and Methods for the Rehabilitation Process -- 3.3.1 Gait Analysis -- 3.3.2 Methods Based on Deep Learning -- 3.3.3 Use of Convolutional Neural Networks -- 3.4 Proposed System -- 3.4.1 Detection of Motion and Rehabilitation Mechanism -- 3.4.2 Data Collection Using Wearable Sensors -- 3.4.3 Raspberry Pi -- 3.4.4 Pre-Processing of the Data -- 3.5 Analysis of the Data -- 3.5.1 Feature Extraction -- 3.5.2 Machine Learning Approach -- 3.5.3 Remote Rehabilitation Mode -- 3.6 Results and Discussion -- 3.7 Conclusion -- References -- 4 Smart Sensors for Activity Recognition -- 4.1 Introduction -- 4.2 Wearable Biosensors for Activity Recognition -- 4.3 Smartphones for Activity Recognition -- 4.3.1 Early Analysis Activity Recognition -- 4.3.2 Similar Approaches Activity Recognition -- 4.3.3 Multi-Sensor Approaches Activity Recognition -- 4.3.4 Fitness Systems in Activity Recognition -- 4.3.5 Human-Computer Interaction Processes in Activity Recognition -- 4.3.6 Healthcare Monitoring in Activity Recognition -- 4.4 Machine Learning Techniques -- 4.4.1 Decision Trees Algorithms for Activity Reorganization -- 4.4.2 Adaptive Boost Algorithms for Activity Reorganization -- 4.4.3 Random Forest Algorithms for Activity Reorganization -- 4.4.4 Support Vector Machine (SVM) Algorithms for Activity Reorganization -- 4.5 Other Applications -- 4.6 Limitations -- 4.6.1 Policy Implications and Recommendations -- 4.7 Discussion -- 4.8 Conclusion -- References -- 5 Use of Assistive Techniques for the Visually Impaired People -- 5.1 Introduction -- 5.2 Rehabilitation Procedure -- 5.3 Development of Applications for Visually Impaired -- 5.4 Academic Research and Development for Assisting Visually Impaired -- 5.5 Conclusion -- References -- 6 IoT-Assisted Smart Device for Blind People -- 6.1 Introduction…”
    Libro electrónico
  9. 3589
    Publicado 2024
    Tabla de Contenidos: “…Advanced driver assistance systems (ADAS) -- Summary -- Chapter 3: Exploring ML Algorithms -- Technical requirements -- How machines learn -- Overview of ML algorithms -- Consideration for choosing ML algorithms -- Algorithms for classification and regression problems -- Linear regression algorithms -- Logistic regression algorithms -- Decision tree algorithms -- Random forest algorithm -- Gradient boosting machine and XGBoost algorithms -- K-nearest neighbor algorithm -- Multi-layer perceptron (MLP) networks -- Algorithms for clustering -- Algorithms for time series analysis -- ARIMA algorithm -- DeepAR algorithm -- Algorithms for recommendation -- Collaborative filtering algorithm -- Multi-armed bandit/contextual bandit algorithm -- Algorithms for computer vision problems -- Convolutional neural networks -- ResNet -- Algorithms for natural language processing (NLP) problems -- Word2Vec -- BERT -- Generative AI algorithms -- Generative adversarial network -- Generative pre-trained transformer (GPT) -- Large Language Model -- Diffusion model -- Hands-on exercise -- Problem statement -- Dataset description -- Setting up a Jupyter Notebook environment -- Running the exercise -- Summary -- Chapter 4: Data Management for ML -- Technical requirements -- Data management considerations for ML -- Data management architecture for ML -- Data storage and management -- AWS Lake Formation -- Data ingestion -- Kinesis Firehose -- AWS Glue -- AWS Lambda -- Data cataloging -- AWS Glue Data Catalog -- Custom data catalog solution -- Data processing -- ML data versioning -- S3 partitions -- Versioned S3 buckets -- Purpose-built data version tools -- ML feature stores -- Data serving for client consumption -- Consumption via API -- Consumption via data copy -- Special databases for ML -- Vector databases -- Graph databases -- Data pipelines…”
    Libro electrónico
  10. 3590
    por Birt, Nate
    Publicado 2023
    Tabla de Contenidos: “…Crest-climbing insight No. 4: Your flawed fear needs a free ride home -- Crest-climbing insight No. 5: You can't climb all the hills today -- Great social impact communicators build a resilient mindset to keep going in the face of adversity -- Act with integrity -- Lead with humility -- Be scientific in your approach -- Stay skeptical -- Communicate with transparency and openness -- After your hike past the crest, learn to navigate the cloud forest beyond -- Wait -- Analyze -- Take Gratitude -- Evaluate Options -- Run Again -- The watchout and the opportunity -- Key Questions -- Chapter 6: Secret #6: Highly effective social impact communicators ... cede perfection to the messy reality of change-making -- How messy looks for social impact communicators -- Paint the vision, not Van Gogh -- Why you should embrace satisfied persistence rather than perfection -- Stop trying to tie up all the loose ends -- Move ahead instead of around in circles -- When the dust flies, remember it will settle -- Capture attention and direct focus rather than sowing chaos -- Turn panic into peaceful action -- Guard the silent moments -- Engage in regular conversation that sparks ideas and opportunities -- Trade predictability for adaptability -- Key Questions -- Chapter 7: Secret #7: Highly effective social impact communicators ... build personal and professional legacies that outlive them and their careers -- First principles of legacy building for social impact communicators -- Principle No. 1: Legacy is the ripple effect of our actions -- Principle No. 2: Legacy is shiftable, not set in stone -- Principle No. 3: Legacy exists beyond our lifetime -- Principle No. 4: Legacy can be a blessing or a byword -- Principle No. 5: Legacy persists in the background -- How you can create a legacy that outlives you -- Legacy Builder 1: Give away your grace and mercy liberally…”
    Libro electrónico
  11. 3591
    Publicado 2011
    Tabla de Contenidos: “…Moller Architects ; La Forum - Liner Competition / Assembledge + ; New York Buffer Space / OFF architecture ; Onigiri Shop at the Rokka Forest / Teruo Miyahara Architect Office ; Mythenquai Zürich / Topotek 1 ; Korkeasaari Zoo (Kozoo) / SLA ; Vaeksthuset Green House / CEBRA a/s, arkitekter maa ; Korkeasaari Zoo / Beckmann-N'Thépé Agency…”
    Libro
  12. 3592
    por Dinamarca.
    Publicado 1993
    Libro
  13. 3593
    Publicado 2021
    “…So is the book pressed into service, danger & endangered. The forest is deforested & reforested, dance of shadow & flame, a fantasia of ecological return, the forest (enchanted) by itself. …”
    Libro electrónico
  14. 3594
    Publicado 2016
    “…he Forest Stewardship Council (FSC) certification system aims to promote sustainable forest management. …”
    Libro electrónico
  15. 3595
  16. 3596
    por Roux, Alice
    Publicado 2020
    “…While the main challenge in intertropical and boreal regions is tackling deforestation and forest resource degradation, forests and forestry in temperate regions face what may appear to be contradictory goals: to increase atmospheric carbon capture through sequestration in biomass and soils, while providing a growing share of the resources needed to produce essential material goods and energy for human societies as well as gradually renewing forests to enable them to adapt to future climate conditions. …”
    Libro electrónico
  17. 3597
    Publicado 2008
    “…When the first humans advanced into the Alps, they encountered dense, primeval forests. Over the centuries, they cleared the woodlands, created fields and pastures, and built their villages higher and higher in the mountains.These farmers were followed by many wild animals that found a new habitat in the changed landscape: wood grouse occupied the forest glades, rock partridges filled the mountain meadows, and red deer populated the alpine pastures. …”
    DVD
  18. 3598
    Publicado 1956
    Libro
  19. 3599
    por Forest, Eva, 1928-2007
    Publicado 1974
    Libro
  20. 3600
    Publicado 2018
    “…Overall, the evaluation, management and planning of the multiplicity of these forest systems requires effective and specific methods and tools in a sustainable frame of the systems and of their products and services. …”
    Libro electrónico