Mostrando 821 - 840 Resultados de 9,588 Para Buscar '"artificial"', tiempo de consulta: 0.10s Limitar resultados
  1. 821
    Publicado 2019
    Materias: “…Artificial intelligence Government policy…”
    Libro electrónico
  2. 822
    Publicado 1992
    Materias: “…Intel·ligència artificial…”
    Libro
  3. 823
    por Krishnamoorthy, C. S.
    Publicado 1996
    Materias: “…Intel·ligència artificial Informàtica…”
    Libro
  4. 824
  5. 825
    Publicado 2017
    Materias:
    Seriada digital
  6. 826
    por Schwartz, Bernard, 1923-1997
    Publicado 1989
    Microfilme
  7. 827
    Publicado 2018
    Tabla de Contenidos: “…La impronta de la inteligencia artificial en el proceso -- Elemento psicológico de las decisiones judiciales e inteligencia artificial -- El periculum de las medidas cautelares y la inteligencia artificial -- Inteligencia artificial y valoración de la prueba -- Inteligencia artificial y sentencia -- Inteligencia artificial y derechos humanos…”
    Libro electrónico
  8. 828
    Publicado 2019
    “…Artificis culturals…”
    Libro electrónico
  9. 829
    Publicado 2018
    Materias:
    Libro electrónico
  10. 830
    Tabla de Contenidos: “…Introduction -- Technological Progress: Logistic Growth or Singularity -- Artificial Intelligence -- Artificial Happiness -- Issues in Artificial Intelligence -- Artificial Intelligence in Economics: ACE -- Economics of Artificial Intelligence -- State of the Art, Challenges for AGI…”
    Libro electrónico
  11. 831
    Materias:
    Revista digital
  12. 832
    Publicado 1998
    Revista digital
  13. 833
    Publicado 1989
    Materias: “…Artificial intelligence Periodicals…”
    Revista digital
  14. 834
    Publicado 2022
    Tabla de Contenidos: “…Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Chapter 1: An Introduction to Artificial Intelligence in Medical Sciences and Psychology -- Context of the Book -- The Book's Central Point -- Artificial Intelligence Subsets Covered in this Book -- Structure of the Book -- Tools Used in This Book -- Python Distribution Package -- Anaconda Distribution Package -- Jupyter Notebook -- Python Libraries -- Encapsulating Artificial Intelligence -- Implementing Algorithms -- Supervised Algorithms -- Unsupervised Algorithms -- Artificial Neural Networks -- Conclusion -- Chapter 2: Realizing Patterns in Diseases with Neural Networks -- Classifying Cardiovascular Disease Diagnosis Outcome Data by Executing a Deep Belief Network -- Preprocessing the Cardiovascular Disease Diagnosis Outcome Data -- Debunking Deep Belief Networks -- Designing the Deep Belief Network -- Relu Activation Function -- Sigmoid Activation Function -- Training the Deep Belief Network -- Outlining the Deep Belief Network's Predictions -- Considering the Deep Neural Network's Performance -- Accuracy Fluctuations Across Epochs in Training and Cross-Validation -- Binary Cross-Entropy Loss Fluctuations Across Epochs in Training and Cross-Validation -- Classifying Diabetes Diagnosis Outcome Data by Executing a Deep Belief Network -- Executing a Deep Belief Network to Classify Diabetes Diagnosis Outcome Data -- Outlining the Deep Belief Network's Predictions -- Considering the Deep Neural Network's Performance -- Accuracy Fluctuations Across Epochs in Training and Cross-Validation -- Binary Cross-Entropy Loss Fluctuations Across Epochs in Training and Cross-Validation -- Conclusion -- Chapter 3: A Case for COVID-19: Considering the Hidden States and Simulation Results -- Executing the Hidden Markov Model -- Descriptive Analysis…”
    Libro electrónico
  15. 835
    por Doumpos, Michael
    Publicado 2013
    Tabla de Contenidos: “…Machine generated contents note: List of Contributors Preface Part One The Contributions of Intelligent Techniques in Multicriteria Decision Aiding 1 Computational Intelligence Techniques for Multicriteria Decision Aiding: An Overview 1.1 Introduction 1.2 The MCDA Paradigm 1.2.1 Modeling Process 1.2.2 Methodological Approaches 1.3 Computational Intelligence in MCDA 1.3.1 Statistical Learning and Data Mining 1.3.2 Fuzzy Modeling 1.3.3 Metaheuristics 1.4 Conclusions References 2 Intelligent Decision Support Systems 2.1 Introduction 2.2 Fundamentals of Human Decision Making 2.3 Decision Support System 2.4 Intelligent Decision Support Systems 2.4.1 Artificial Neural Networks for Intelligent Decision Support 2.4.2 Fuzzy Logic for Intelligent Decision Support 2.4.3 Expert Systems for Intelligent Decision Support 2.4.4 Evolutionary Computing for Intelligent Decision Support 2.4.5 Intelligent Agents for Intelligent Decision Support 2.5 Evaluating Intelligent Decision Support Systems 2.5.1 Determining Evaluation Criteria 2.5.2 Multi-Criteria Model for IDSS Assessment 2.6 Summary and Future Trends References Part Two Intelligent Technologies for Decision Support and Preference Modeling 3 Designing Distributed Multi-Criteria Decision Support Systems for Complex and Uncertain Situations 3.1 Introduction 3.2 Example Applications 3.3 Key Challenges 3.4 Making Trade-offs: Multi-criteria Decision Analysis 3.4.1 Multi-attribute Decision Support 3.4.2 Making Trade-offs Under Uncertainty 3.5 Exploring the Future: Scenario-based Reasoning 3.6 Making Robust Decisions: Combining MCDA and SBR 3.6.1 Decisions Under Uncertainty: The Concept of Robustness 3.6.2 Combining Scenarios and MCDA 3.6.3 Collecting, Sharing and Processing Information: A Distributed Approach 3.6.4 Keeping Track of Future Developments: Constructing Comparable Scenarios 3.6.5 Respecting Constraints and Requirements: Scenario Management 3.6.6 Assisting Evaluation: Assessing Large Numbers of Scenarios 3.7 Discussion 3.8 Conclusion References 4 Preference Representation with Ontologies 4.1 Introduction 4.1.1 Structure of the Chapter 4.2 Ontology-based Preference Models 4.3 Maintaining the User's Profile up to Date 4.4 Decision Making Methods Exploiting the Preference Information Stored in Ontologies 4.4.1 Recommendation Based on Aggregation 4.4.2 Recommendation Based on Similarities 4.4.3 Recommendation Based on Rules 4.5 Discussion and Open Questions References Part Three Decision Models 5 Neural Networks in Multicriteria Decision Support 5.1 Introduction 5.2 Basic Concepts of Neural Networks 5.2.1 Neural Networks for Intelligent Decision Support 5.3 Basics in Multicriteria Decision Aid 5.3.1 MCDM Problems 5.3.2 Solutions of MCDM Problems 5.4 Neural Networks and Multicriteria Decision Support 5.4.1 Review of Neural Network Applications to MCDM Problems 5.4.2 Discussion 5.5 Summary and Conclusions References 6 Rule-Based Approach to Multicriteria Ranking 6.1 Introduction 6.2 Problem Setting 6.3 Pairwise Comparison Table (PCT) 6.4 Rough Approximation of Outranking and Non-outranking Relations 6.5 Induction and Application of Decision Rules 6.6 Exploitation of Preference Graphs 6.7 Illustrative Example 6.8 Summary and Conclusions References 7 About the Application of Evidence Theory in MultiCriteria Decision Aid 7.1 Introduction 7.2 Evidence Theory: Some Concepts 7.2.1 Knowledge Model 7.2.2 Combination 7.2.3 Decision Making 7.3 New Concepts in Evidence Theory for MCDA 7.3.1 First Belief Dominance 7.3.2 RBBD Concept 7.4 Multicriteria Methods modeled by Evidence Theory 7.4.1 Evidential Reasoning Approach 7.4.2 DS/AHP 7.4.3 DISSET 7.4.4 A Choice Model Inspired by ELECTRE I 7.4.5 A Ranking Model Inspired by Xu et al.'…”
    Libro electrónico
  16. 836
    Publicado 2021
    Tabla de Contenidos: “…Front Cover -- Artificial Intelligence for Future Generation Robotics -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1. …”
    Libro electrónico
  17. 837
    Publicado 2019
    Materias:
    Video
  18. 838
    Publicado 2018
    Materias: “…Intel·ligència artificial…”
    Accés restringit als usuaris del CCS
    Libro
  19. 839
    Publicado 2021
    Materias:
    Libro electrónico
  20. 840
    Publicado 2021
    Materias: “…Intel·ligència artificial…”
    Libro