Mostrando 581 - 600 Resultados de 9,588 Para Buscar '"artificial"', tiempo de consulta: 0.10s Limitar resultados
  1. 581
    por Desrousseaux, Maylis
    Publicado 2020
    Tabla de Contenidos: “…Intro -- Table des matières -- Artificialized land and land take -- Foreword -- 'Land Take', an ambiguous scientific concept -- - Methods of measuring the extent of land take in France -- - The impacts of land take on the characteristics and properties of soils -- - The direct and indirect impacts of land take on the characteristics and functioning of artificialized environments -- - Agricultural land, agricultural activities, and land take -- - Household location strategies and housing construction -- - Determinants of land take by enterprises and transport infrastructure -- - Avoiding or reducing land take, or possibly compensating for its effects -- Bibliography -- List of Authors…”
    Libro electrónico
  2. 582
    Publicado 1992
    Materias:
    Revista digital
  3. 583
    Publicado 2009
    Materias: “…Artificial intelligence Periodicals…”
    Revista digital
  4. 584
    Publicado 1990
    Materias: “…Artificial intelligence Periodicals…”
    Revista digital
  5. 585
    Publicado 2009
    Seriada digital
  6. 586
    Publicado 1996
    Materias: “…Artificial intelligence Periodicals…”
    Revista digital
  7. 587
    Publicado 2019
    Tabla de Contenidos: “…Front Cover -- Artificial Intelligence For The Internet of Everything -- Copyright -- Contents -- Contributors -- Chapter 1: Introduction -- 1.1. …”
    Libro electrónico
  8. 588
    Publicado 2016
    “…As with other technologies introduced in the past decade, artificial intelligence is the subject of many market predictions. …”
    Libro electrónico
  9. 589
    por Bergel, Alexandre. author
    Publicado 2020
    Tabla de Contenidos: “…Part I: Neural Network -- 1: The Perceptron Model -- 2: Artificial Neuron -- 3: Neural Networks -- 4: Theory on Learning -- 5: Data Classification -- 6: A Matrix Library -- 7: Matrix-Based Neural Network -- Part II: Genetic Algorithm -- 8: Genetic Algorithm -- 9: Genetic Algorithm in Action -- 10: Traveling Salesman Problem -- 11: Exiting a Maze -- 12: Building Zoomorphic Creatures -- 13: Evolving Zoomorphic Creature -- Part III: Neuroevolution -- 14: Neuroevolution -- 15: Neuroevolution with NEAT -- 16: The MiniMario Video Game -- Last Words…”
    Libro electrónico
  10. 590
    Publicado 2018
    Materias: “…Artificial intelligence Data processing…”
    Libro electrónico
  11. 591
    Publicado 2021
    Materias: “…Artificial intelligence Moral and ethical aspects…”
    Libro electrónico
  12. 592
    Publicado 2018
    Tabla de Contenidos: “…Cover -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: Big Data and Artificial Intelligence Systems -- Results pyramid -- What the human brain does best -- Sensory input -- Storage -- Processing power -- Low energy consumption -- What the electronic brain does best -- Speed information storage -- Processing by brute force -- Best of both worlds -- Big Data -- Evolution from dumb to intelligent machines -- Intelligence -- Types of intelligence -- Intelligence tasks classification -- Big data frameworks -- Batch processing -- Real-time processing -- Intelligent applications with Big Data -- Areas of AI -- Frequently asked questions -- Summary -- Chapter 2: Ontology for Big Data -- Human brain and Ontology -- Ontology of information science -- Ontology properties -- Advantages of Ontologies -- Components of Ontologies -- The role Ontology plays in Big Data -- Ontology alignment -- Goals of Ontology in big data -- Challenges with Ontology in Big Data -- RDF-the universal data format -- RDF containers -- RDF classes -- RDF properties -- RDF attributes -- Using OWL, the Web Ontology Language -- SPARQL query language -- Generic structure of an SPARQL query -- Additional SPARQL features -- Building intelligent machines with Ontologies -- Ontology learning -- Ontology learning process -- Frequently asked questions -- Summary -- Chapter 3: Learning from Big Data -- Supervised and unsupervised machine learning -- The Spark programming model -- The Spark MLlib library -- The transformer function -- The estimator algorithm -- Pipeline -- Regression analysis -- Linear regression -- Least square method -- Generalized linear model -- Logistic regression classification technique -- Logistic regression with Spark -- Polynomial regression -- Stepwise regression -- Forward selection -- Backward elimination…”
    Libro electrónico
  13. 593
    Publicado 2019
    Tabla de Contenidos: “…; IoT reference model; IoT platforms; IoT verticals; Big data and IoT; Infusion of AI -- data science in IoT; Cross-industry standard process for data mining; AI platforms and IoT platforms; Tools used in this book; TensorFlow; Keras; Datasets; The combined cycle power plant dataset; Wine quality dataset; Air quality data; Summary; Chapter 2: Data Access and Distributed Processing for IoT; TXT format Using TXT files in PythonCSV format; Working with CSV files with the csv module; Working with CSV files with the pandas module; Working with CSV files with the NumPy module; XLSX format; Using OpenPyXl for XLSX files; Using pandas with XLSX files; Working with the JSON format; Using JSON files with the JSON module; JSON files with the pandas module; HDF5 format; Using HDF5 with PyTables; Using HDF5 with pandas; Using HDF5 with h5py; SQL data; The SQLite database engine; The MySQL database engine; NoSQL data; HDFS; Using hdfs3 with HDFS; Using PyArrow's filesystem interface for HDFS; Summary; Chapter 3: Machine Learning for IoTML and IoT; Learning paradigms; Prediction using linear regression; Electrical power output prediction using regression; Logistic regression for classification; Cross-entropy loss function; Classifying wine using logistic regressor; Classification using support vector machines; Maximum margin hyperplane; Kernel trick; Classifying wine using SVM; Naive Bayes; Gaussian Naive Bayes for wine quality; Decision trees; Decision trees in scikit; Decision trees in action; Ensemble learning; Voting classifier; Bagging and pasting; Improving your model -- tips and tricksFeature scaling to resolve uneven data scale; Overfitting; Regularization; Cross-validation; No Free Lunch theorem; Hyperparameter tuning and grid search; Summary; Chapter 4: Deep Learning for IoT; Deep learning 101; Deep learning-why now?; Artificial neuron; Modelling single neuron in TensorFlow; Multilayered perceptrons for regression and classification; The backpropagation algorithm; Energy output prediction using MLPs in TensorFlow; Wine quality classification using MLPs in TensorFlow; Convolutional neural networks; Different layers of CNN ; The convolution layerPooling layer; Some popular CNN model; LeNet to recognize handwritten digits; Recurrent neural networks; Long short-term memory; Gated recurrent unit; Autoencoders; Denoising autoencoders; Variational autoencoders; Summary; Chapter 5: Genetic Algorithms for IoT; Optimization; Deterministic and analytic methods; Gradient descent method; Newton-Raphson method; Natural optimization methods; Simulated annealing; Particle Swarm Optimization; Genetic algorithms; Introduction to genetic algorithms; The genetic algorithm; Crossover; Mutation; Pros and cons; Advantages…”
    Libro electrónico
  14. 594
    Publicado 2022
    Tabla de Contenidos: “…Intro -- Table of Contents -- About the Author -- About the Technical Reviewers -- Acknowledgments -- Introduction -- Part I: Getting Started with Neural Networks -- Chapter 1: Learning About Neural Networks -- Biological and Artificial Neurons -- Activation Functions -- Summary -- Chapter 2: Internal Mechanics of Neural Network Processing -- Function to Be Approximated -- Network Architecture -- Forward Pass Calculation -- Input Record 1 -- Input Record 2 -- Input Record 3 -- Input Record 4 -- Back-Propagation Pass -- Function Derivative and Function Divergent -- Most Commonly Used Function Derivatives -- Summary -- Chapter 3: Manual Neural Network Processing -- Example: Manual Approximation of a Function at a Single Point -- Building the Neural Network -- Forward Pass Calculation -- Hidden Layers -- Output Layer -- Backward Pass Calculation -- Calculating Weight Adjustments for the Output-Layer Neurons -- Calculating Adjustment for W211 -- Calculating Adjustment for W212 -- Calculating Adjustment for W213 -- Calculating Weight Adjustments for Hidden-Layer Neurons -- Calculating Adjustment for W111 -- Calculating Adjustment for W112 -- Calculating Adjustment for W121 -- Calculating Adjustment for W122 -- Calculating Adjustment for W131 -- Calculating Adjustment for W132 -- Updating Network Biases -- Back to the Forward Pass -- Hidden Layers -- Output Layer -- Matrix Form of Network Calculation -- Digging Deeper -- Mini-Batches and Stochastic Gradient -- Summary -- Part II: Neural Network Java Development Environment -- Chapter 4: Configuring Your Development Environment -- Installing the Java Environment and NetBeans on Your Windows Machine -- Installing the Encog Java Framework -- Installing the XChart Package -- Summary -- Chapter 5: Neural Networks Development Using the Java Encog Framework…”
    Libro electrónico
  15. 595
    Publicado 2021
    Materias: “…Artificial intelligence Medical applications Periodicals…”
    Revista digital
  16. 596
    Publicado 2020
    Materias:
    Libro electrónico
  17. 597
    Publicado 2019
    Libro electrónico
  18. 598
    Publicado 2021
    Materias: “…Artificial intelligence…”
    Libro electrónico
  19. 599
    Publicado 2013
    Materias: “…Artificial cells Periodicals…”
    Revista digital
  20. 600
    Publicado 2016
    Materias: “…Artificial intelligence Economic aspects…”
    Libro electrónico