Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Historia 29
- Economía 21
- Risk management 20
- Construcción 18
- Teología 18
- Teoría 18
- Application software 17
- Development 16
- Data processing 14
- History 14
- Iglesia católica 14
- C# (Computer program language) 13
- Finance 12
- Gran Bretaña 12
- Mathematical models 12
- Teología moral 12
- Derecho canónico 11
- Dermápteros 11
- Economistas 11
- Java (Computer program language) 11
- Programming 11
- Python (Computer program language) 11
- Tecnología 11
- Código 10
- Enfermería 10
- JavaScript (Computer program language) 10
- Agricultura 9
- Alimentos 9
- Computer programming 9
- Technology 9
-
1081Publicado 2015Tabla de Contenidos: “…Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Time Series Analysis; Multivariate time series analysis; Cointegration; Vector autoregressive models; VAR implementation example; Cointegrated VAR and VECM; Volatility modeling; GARCH modeling with the rugarch package; The standard GARCH model; Exponential GARCH model (EGARCH); Threshold GARCH model (TGARCH); Simulation and forecasting; Summary; References and reading list; Chapter 2: Factor Models; Arbitrage pricing theory; Implementation of APT…”
Libro electrónico -
1082Publicado 2012Tabla de Contenidos: “…Structured Finance Rating TransitionsUNDERSTANDING CREDIT RISK; Definition of Credit Risk; The Asset Exposure; Recovery Value; Collateral and Third-Party Guarantees; EXTERNAL RATING AGENCY CREDIT RATINGS; Credit Analysis; Financial Analysis; Industry-specific Analysis; BANK INTERNAL CREDIT RATINGS; CREDIT VALUE-at-RISK; Time Horizon; Data Inputs; VARIANCE-COVARIANCE CREDIT VaR; Methodology; Time Horizon; Calculating the Credit VaR; CREDIT LIMIT SETTING AND RATIONALE; Credit Limit Principles; Credit Limit Setting; LOAN ORIGINATION PROCESS STANDARDS; Credit Process; Capital Allocation Process…”
Libro electrónico -
1083por Racicot, François-EricTabla de Contenidos: “…TABLE DES MATIÈRES; AVANT-PROPOS; PRÉSENTATION DE LA DEUXIÈME ÉDITION; Partie 1: LES FONDEMENTS; Chapitre 1: LES FONDEMENTS DU CALCUL NUMÉRIQUE; Chapitre 2: UNE INTRODUCTION AUX MÉTHODES; Partie 2: «BOOTSTRAPPING» ET ALGORITHMES D'OPTIMISATION; Chapitre 3: LES ASPECTS THÉORIQUES; Chapitre 4: LES ASPECTS THÉORIQUES DE LA CONSTRUCTION DE L'ARBRE BINOMIAL DE TAUX D'INTÉRÊT DU MODÈLEDE BLACK, DERMAN ET TOY; Chapitre 5: VARIATIONS SUR LES ASPECTS THÉORIQUES DE LA VaR AVEC APPLICATIONS VISUAL BASIC DU CALCUL DE LA VaR SELON LA MÉTHODE DU BOOTSTRAPPING ET SELON L'EXPANSION DE CORNISH-FISHER…”
Publicado 2004
Libro electrónico -
1084Publicado 2013Tabla de Contenidos: “…Rodney Brister, and Yiming Bao -- Variation -- Variation overview / Deanna Church, Stephen Sherry, Lon Phan, Minghong Ward, Melissa Landrum, and Donna Maglott -- The Database of Genotypes and Phenotypes (dbGaP) and PheGenI / Kimberly A Tryka, Luning Hao, Anne Sturcke, Yumi Jin, Masato Kimura, Zhen Y Wang, Lora Ziyabari, Moira Lee, and Michael Feolo -- The Database of Short Genetic Variation (dbSNP) / Adrienne Kitts, Lon Phan, Minghong Ward, and Deanna Church -- ClinVar / Melissa Landrum, Jennifer Lee, George Riley, Wonhee Jang, Wendy Rubinstein, Deanna Church, and Donna Maglott -- Health -- MedGen / Maryam Halavi, Donna Maglott, Viatcheslav Gorelenkov, and Wendy Rubinstein -- ClinVar / Melissa Landrum, Jennifer Lee, George Riley, Wonhee Jang, Wendy Rubinstein, Deanna Church, and Donna Maglott -- Genes and gene expression -- Genes and gene expression / Donna Maglott, Tanya Barrett, Terence Murphy, Michael Feolo, Lukas Wagner, and Richa Agarwala -- Gene Expression Omnibus (GEO) / Tanya Barrett -- Gene / Donna Maglott Kim Pruitt Tatiana Tatusova and Terence Murphy PhD -- UniGene / Lukas Wagner and Richa Agarwala -- Nucleotide -- GenBank / Ilene Mizrachi -- Protein -- NCBI protein resources / Eric Sayers -- Small molecules and biological assays -- Small molecules and biological activities / Rana Morris -- Tools -- The BLAST sequence analysis tool / Thomas Madden -- The Entrez Search and Retrieval System / Jim Ostell -- C++ Toolkit / Denis Vakatov -- LinkOut: linking to external resources from NCBI databases / Y. …”
Revista digital -
1085
-
1086Publicado 2019Tabla de Contenidos: “…About the Author xiii Preface xv 1 Forecasting a Monthly Time Series 1 1.1 Introduction 1 1.2 Forecasting Using LV(p) Models 1 1.2.1 Basic or Regular LV(p) Models 1 1.2.2 Special LV(p) Models 6 1.3 Forecasting Using the LVARMA(p,q,r) Model 8 1.3.1 Special Notes on the ARMA Model 9 1.3.2 Application of Special LVAR Models 10 1.4 Forecasting Using TGARCH(a,b,c) Models 12 1.4.1 Application of ARCH(a), GARCH(b), and TARCH(c) Models 14 1.4.2 Application of TGARCH(a,b,0) Models 14 1.4.3 Application of TGARCH(a,b,c) Models 20 1.4.4 Other Alternative Models 20 1.5 Instrumental Variables Models 20 1.5.1 Application of the GMM Estimation Method 21 1.5.2 Application of the TSLS Estimation Method 36 1.6 Special Notes and Comments on Residual Analysis 42 1.6.1 Specific Residual Analysis 43 1.6.2 Additional Special Notes and Comments 61 1.6.3 Serial Correlation Tests 65 1.7 Statistical Results Using Alternative Options 67 1.7.1 Application of an Alternative Coefficient Covariance Matrix 67 1.7.2 Application of Selected Combinations of Options 70 1.7.3 Final Notes and Conclusions 71 2 Forecasting with Time Predictors 73 2.1 Introduction 73 2.2 Application of LV(p) Models of HS on MONTH by YEAR 73 2.2.1 Special LV(12) Models of HS on MONTH by YEAR 73 2.2.2 Application of the Omitted Variables Test - Likelihood Ratio 75 2.2.3 Heterogeneous Model of HS on HS(−12) and Month by YEAR 79 2.3 Forecast Models of HS on MONTH by YEAR 79 2.3.1 Application of LV(1) Models of HS on MONTH by YEAR 79 2.3.2 Application of Basic LV(p) Models of HS on MONTH by YEAR 82 2.3.3 Application of AR(q) Models of HS on MONTH by YEAR 86 2.3.4 Application of ARMA(q,r) Models of HS on MONTH by YEAR 89 2.3.5 Application of LVAR(p,q) Models of HS on MONTH by YEAR 89 2.3.6 Application of LVAR(p,q) Models of HS on YEAR by MONTH 92 2.4 Heterogeneous Classical Growth Models 95 2.4.1 Forecasting Based on LV(p) Het_CGMs of HS 95 2.4.2 Forecasting Based on AR(q) Het_CGMs 99 2.4.3 Forecasting Based on LVAR(p,q) Het_CGMs 101 2.5 Forecast Models of G in Currency.wf1 103 2.5.1 LVAR(p,q) Additive Models of G by @Month with @Trend 104 2.5.2 LV(1) Heterogeneous Models of G by @Month 111 2.6 Forecast Models of G on G(−1) and Polynomial Time Variables 116 2.6.1 Heterogeneous Model of G on G(−1) and Polynomial T by @Month 116 2.6.2 Forecast Model of G on G(−1) with Heterogeneous Polynomial Trend 138 2.7 Forecast Models of CURR in Currency.wf1 140 2.7.1 Developing Scatter Graphs with Regressions 141 2.7.2 Additive Forecast Models of CURR with a Time Predictor 143 2.7.3 Interaction Forecast Models of CURR 159 2.7.4 Forecast Models Based on Subsamples 169 3 Continuous Forecast Models 185 3.1 Introduction 185 3.2 Forecasting of FSPCOM 185 3.2.1 Simple Continuous Models of FSPCOM 185 3.2.2 LVAR(P,Q) Models of Y = FSPCOM with Polynomial Trend 190 3.2.3 Translog Models with Time Predictor 195 3.3 Forecasting Based on Subsamples 207 3.3.1 Lag Variable Models With Lower and Upper Bounds 209 3.4 Special LV(12) Models of HS with Upper and Lower Bounds 222 3.4.1 Special LVARMA(12,q,r) Model of LNYul Without Time Predictor 223 3.4.2 Special LVARMA(12,q,r) of LNYul With Time Predictor 223 4 Forecasting Based on (Xt,Yt) 229 4.1 Introduction 229 4.2 Forecast Models Based on (Xt,Yt) 229 4.3 Data Analysis Based on a Monthly Time Series 230 4.4 Forecast Models without a Time Predictor 230 4.4.1 Two-Way Interaction Models 230 4.4.2 Cobb-Douglass Model and Alternatives 235 4.5 Translog Quadratic Model 236 4.5.1 Forecasting Using a Subsample 240 4.5.2 Forecast Model with Trend 243 4.6 Forecasting of FSXDP 247 4.6.1 Forecasting of Y2 Based on a Subsample 247 4.6.2 Extension of the Model (4.25) with Time Variables 252 4.7 Translog Linear Models 256 4.7.1 Basic Translog Linear Model 256 4.7.2 Tanslog Linear Model with Trend 256 4.7.3 Heterogeneous Tanslog Linear Model 260 4.8 Application of VAR Models 262 4.8.1 Unstructured VAR Models Based on (X1t,Y1t) 262 4.8.2 The Simplest VAR Models with Alternative Trends 264 4.8.3 Complete Heterogeneous VAR Models by @Month 270 4.8.4 Bayesian VAR Models 271 4.8.5 VEC Models 271 4.9 Forecast Models Based on (Y1t,Y2t) 275 4.9.1 Forecast Models Based on Figures 4.42a and b 275 4.9.2 Reciprocal Causal Effects Models 279 4.9.3 Models with the Time Independent Variables 280 4.10 Special Notes and Comments 287 5 Forecasting Based On (X1t,X2t,Yt) 289 5.1 Introduction 289 5.2 Translog Linear Models Based on (X1,X2,Y1) 289 5.2.1 Basic Translog Linear Model 289 5.2.2 Tanslog Linear Model with Trend 292 5.2.3 Tanslog Linear Model with Heterogeneous Trends 292 5.3 Translog Linear Models Based on (X1,X2,Y2) 293 5.3.1 Translog Linear Models Using the Subsample {@Year>1990} 296 5.3.2 Translog Linear Models Using the Subsample {@Year>1975} 298 5.3.3 Translog Linear Models Using the Whole Sample 298 5.4 Forecast Models Using Original (X1,X2,Y) 300 5.4.1 Model Based on Figure 5.6a 300 5.4.2 Model Based on Figure 5.6b 301 5.4.3 Model Based on Figure 5.6c 307 5.5 Alternative Forecast Models Using Original (X1,X2,Y) 310 5.5.1 Three-Way Interaction Based on Figure 5.14a 311 5.5.2 Three-Way Interaction Based on Figure 5.14b and c 311 5.6 Forecasting Models with Trends Using Original (X1,X2,Y) 311 5.7 Application of VAR Models Based on (X1t,X2t,Y1t) 316 5.7.1 Unrestricted VAR Models 316 5.7.2 The Simplest Two-Way Interaction VAR Model 317 5.7.3 The Simplest Three-Way Interaction VAR Model 318 5.8 Applications of the Object "System" 320 5.8.1 The MLV(1,1,1) Models of (Y1,Y2,Y3) on (Y1(−1),Y2(−1),Y3(−1)) 320 5.8.2 Circular Effects MLV(1,1,1) Models 328 5.9 Models Presenting Causal Relationships Y1,Y2, and Y3 335 5.9.1 Triangular Effects Models 335 5.9.2 Circular Effects Models 340 5.9.3 Reciprocal Effects Models 341 5.10 Extended Models 344 5.10.1 Extension to the Models with Additional Exogenous Variables 344 5.10.2 Extension to the Models with Alternative Trends 347 5.10.3 Extension to LVARMA(p,q,r) 352 5.10.4 Extension to Heterogeneous Regressions by Months 356 5.11 Special Notes and Comments 369 6 Forecasting Quarterly Time Series 371 6.1 Introduction 371 6.2 Alternative LVARMA(p,q,r) Of a Single Time Series 371 6.2.1 LV(P) Forecast Model of GCDANt 371 6.2.2 LVARMA(p,q.r) Forecast Models of GCDN 372 6.2.3 Forecast Models of GCDAN with Time Variables 374 6.2.4 Special Notes on Uncommon Models 381 6.3 Complete Heterogeneous LV(2) Models of GCDAN By @Quarter 383 6.3.1 Using the Simplest Equation Specification 383 6.3.2 Using a Complete Equation Specification 387 6.4 LV(2) Models of GCDAN with Exogenous Variables 387 6.4.1 LV(2) Models with an Exogenous Variable 387 6.4.2 LV(2) Models with Two Exogenous Variables 390 6.5 Alternative Forecast Models Based on (Y1,Y2) 393 6.5.1 LV(2) Basic Interaction Models 393 6.5.2 LV(2) Models of (Y1,Y2) with an Exogenous Variable and @Trend 394 6.5.3 LV(2) Models of (Y1,Y2) with two Exogenous Variables and Trend 400 6.5.4 LV(2) Models of (Y1,Y2) with Three Exogenous Variables and Trend 409 6.6 Triangular Effects Models Based on (X1,X2,Y1) 413 6.6.1 Partial Two-Way Interaction LV(p) TE_Models 413 6.6.2 A Complete Two-Way Interaction LV(p) TE_Models 414 6.6.3 Three-Way Interaction LV(p) TE_ Models 415 6.7 Bivariate Triangular Effects Models Based on (X1,X2,Y1,Y2) 417 6.7.1 Partial Two-Way Interaction Models 417 6.7.2 Three-Way Interaction TE_Models 418 6.8 Models with Exogenous Variables and Alternative Trends 422 6.8.1 Models Based on (X1,X2,Y1) 422 6.8.2 Models Based on (X1,X2,Y1,Y2) with Trend 424 6.9 Special LV(4) Models with Exogenous Variables 427 6.10 Models with Exogenous Variables by @Quarter 433 6.10.1 Alternative Models Based on the Whole Sample 433 6.10.2 Forecasting Based on each Quarter's Level 435 7 Forecasting Based on Time Series by States 447 7.1 Introduction 447 7.2 Models Based on a Bivariate (Y1_1,Y1_2) 447 7.2.1 Alternative LV(p) Models Based on Figure 7.1a 448 7.2.2 Alternative LV(p) Models Based on Figure 7.1b 451 7.2.3 Alternative LV(p) Models Based on Figure 7.1c 454 7.3 Advanced LP(p) Models of (Y1_1,Y1_2) 455 7.3.1 Two-Way Interaction LV(p) Models 455 7.3.2 Three-Way Interaction LV(p) Models 456 7.3.3 Alternative Additive Models 456 7.4 Advanced LP(p) Models of (Y1_1,Y1_2,Y1_3) 457 7.4.1 Triangular Effects Model of (Y1_1,Y1_2,Y1_3) 457 7.4.2 Full-Lag Variables Triangular Effects Model 462 7.4.3 Translog-Linear Triangular Effects Model 466 7.5 Full-Lag Variables Circular Effects Model 466 7.5.1 Two-Way Interaction…”
Libro electrónico -
1087
-
1088
-
1089
-
1090
-
1091
-
1092
-
1093por Friesen, Jeff. author“…In some cases, source code has been simplified to use Java 11’s var language feature. The first six chapters focus on XML along with the SAX, DOM, StAX, XPath, and XSLT APIs. …”
Publicado 2019
Libro electrónico -
1094
-
1095Publicado 2009“…Shows you how to design SSIS solutions for data cleansing, ETL and file managementDemonstrates how to integrate data from a var…”
Libro electrónico -
1096Publicado 2020“…I 2015 gjennomføre Kulturhistorisk museum utgravninger i Løten og Elverum kommuner, region Innlandet. Bakgrunnen var Statens vegvesens planer om å bygge ut riksveiene 3 og 25 for å skape en bedre veiforbindelse mellom skogene i Østerdalen og jordbruksbygdene på Hedmarken. …”
Libro electrónico -
1097Publicado 2020“…This edition focuses on examples you can build and run with the free Power BI Desktop, and helps you make the most of the powerful syntax of variables (VAR) in Power BI, Excel, or Analysis Services. Want to leverage all of DAX's remarkable capabilities? …”
Libro electrónico -
1098Publicado 2021“…Helgesen oppnådde graden dr.oecon. fra NHH i 1999 og ble i 2009 professor i markedsføring ved det som den gang var Høgskolen i Ålesund. I 2010 ble han også professor II i økonomisk styring ved NHH, en posisjon han hadde fram til 2018. …”
Libro electrónico -
1099Publicado 2021“…Skillingsvisene var i 400 år en populær sjanger over hele Europa. …”
Libro electrónico -
1100Publicado 2005“…Through the use of one case study, however, experts in borderline personality disorders have put this difficulty at ease. Applying a var…”
Libro electrónico