Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Animal science 784
- Agronomy 705
- Agronomia 696
- Agronomía 686
- Animales 480
- Computer animation 457
- Animals 429
- Computer graphics 359
- Design 323
- Programming 307
- Application software 285
- Development 279
- Web sites 199
- Engineering & Applied Sciences 192
- Animals personificats 181
- Ciencia Animal 173
- Entitats sense ànim de lucre 153
- Video games 152
- History 150
- Photography 150
- Three-dimensional display systems 149
- Agriculture 147
- JavaScript (Computer program language) 143
- Web site development 133
- Data processing 132
- Flash (Computer file) 125
- Historia 124
- Documentales 120
- Computer Science 117
- Computer games 113
-
10881Publicado 2016Tabla de Contenidos: “…-- Give Me All the Indices -- Try It Out 16-3 -- Your Computer the Poet -- Step 1: Open the Startup File -- Step 2: Set Up the Graphical User Interface -- Step 3: Respond to Button Clicks -- Step 4: Write the Poem's First Line -- Step 5: Write the Poem's Second and Third Lines -- Try It Out 16-4 -- Programming Challenges -- Chapter 17: Expanding to Higher-Dimension Arrays -- Two-Dimensional Arrays -- A Random Matrix -- Try It Out 17-1 -- A Matrix with User Input -- Animated Squares -- Try It Out 17-2 -- Using String Indices -- Try It Out 17-3 -- Going Interactive -- Try It Out 17-4 -- Common Operations on Numerical 2D Arrays -- Step 1: Add All Elements -- Step 2: Find the Sum of Each Column -- Try It Out 17-5 -- Arrays of Three or More Dimensions -- Try It Out 17-6 -- Create a Treasure Map Game -- Step 1: Open the Startup File -- Step 2: Create the GUI Elements -- Step 3: Start a New Game -- Step 4: Create a New Treasure Map -- Step 5: Draw Objects on the Map -- Step 6: Show the Player's Location -- Step 7: Handle Button Clicks -- Try It Out 17-7 -- Programming Challenges…”
Libro electrónico -
10882Publicado 2017Tabla de Contenidos: “…11.9 Conclusions -- Appendix A -- Appendix B -- References -- Nomenclature -- 12 Microstructural In uences on Growth and Transport in Biological Tissue-A Multiscale Description -- 12.1 Introduction -- 12.2 Formulation: Nutrient-Limited Microscale Growth of a Porous Medium -- 12.2.1 Microscale Governing Equations and Boundary Conditions -- 12.2.2 Non-dimensionalization -- 12.3 Multiple Scales Analysis -- 12.3.1 Microscale Flow and Transport -- 12.3.2 Macroscale Flow and Transport -- 12.4 Results -- 12.4.1 Microscale Numerical Experiments -- 12.4.2 Macroscale Dynamics -- 12.5 Discussion -- Acknowledgements -- References -- 13 How Dense Core Vesicles Are Delivered to Axon Terminals - A Review of Modeling Approaches -- 13.1 Introduction -- 13.2 Review of Relevant Literature -- 13.2.1 Dense Core Vesicles and Their Cargos -- 13.2.2 Accumulation and Release of DCVs -- 13.2.3 DCV Transport in Axon Terminals -- 13.2.4 Link to Neurodegenerative Disorders -- 13.2.5 Importance of Mathematical Modeling for Better Understanding of Biological Issues Related to DCV Transport and Release -- 13.2.6 Modeling of DCV Transport -- 13.3 Mathematical Models of DCV Transport and Accumulation in Axon Terminals -- 13.3.1 Morphology of Axon Terminals -- 13.3.2 Simulated Geometry and Major Assumptions of the Model -- 13.3.3 Governing Equations -- 13.3.4 Estimation of Parameter Values -- 13.4 Results and Discussion -- 13.5 Future Work -- 13.6 Conclusions -- Acknowledgement -- References -- Nomenclature -- 14 Modeling of Food Digestion -- 14.1 Introduction -- 14.2 The Complexity of Food Digestion and Absorption -- 14.2.1 Chemical Processes -- 14.2.2 Physical Processes -- 14.2.3 Biological Processes -- 14.3 Development of Digestion and Absorption Modeling -- 14.3.1 Drug Absorption -- 14.3.2 Animal Feed Digestion and Absorption…”
Libro electrónico -
10883por Seo, Jin KeunTabla de Contenidos: “…Machine generated contents note: Preface List of Abbreviations 1 Introduction 1.1 Forward Problem 1.2 Inverse Problem 1.3 Issues in Inverse Problem Solving 1.4 Linear, Nonlinear and Linearized Problems 2 Signal and System as Vectors 2.1 Vector Space 2.1.1 Vector Space and Subspace 2.1.2 Basis, Norm and Inner Product 2.1.3 Hilbert Space 2.2 Vector Calculus 2.2.1 Gradient 2.2.2 Divergence 2.2.3 Curl 2.2.4 Curve 2.2.5 Curvature 2.3 Taylor's Expansion 2.4 Linear System of Equations 2.4.1 Linear System and Transform 2.4.2 Vector Space of Matrix 2.4.3 Least Square Solution 2.4.4 Singular Value Decomposition (SVD) 2.4.5 Pseudo-inverse 2.5 Fourier Transform 2.5.1 Series Expansion 2.5.2 Fourier Transform 2.5.3 Discrete Fourier Transform (DFT) 2.5.4 Fast Fourier Transform (FFT) 2.5.5 Two-dimensional Fourier Transform References 3 Basics for Forward Problem 3.1 Understanding PDE using Images as Examples 3.2 Heat Equation 3.2.1 Formulation of Heat Equation 3.2.2 One-dimensional Heat Equation 3.2.3 Two-dimensional Heat Equation and Isotropic Diffusion 3.2.4 Boundary Conditions 3.3 Wave Equation 3.4 Laplace and Poisson Equations 3.4.1 Boundary Value Problem 3.4.2 Laplace Equation in a Circle 3.4.3 Laplace Equation in Three-dimensional Domain 3.4.4 Representation Formula for Poisson Equation References 4 Analysis for Inverse Problem 4.1 Examples of Inverse Problems in Medical Imaging 4.1.1 Electrical Property Imaging 4.1.2 Mechanical Property Imaging 4.1.3 Image Restoration 4.2 Basic Analysis 4.2.1 Sobolev Space 4.2.2 Some Important Estimates 4.2.3 Helmholtz Decomposition 4.3 Variational Problems 4.3.1 Lax-Milgram Theorem 4.3.2 Ritz Approach 4.3.3 Euler-Lagrange Equations 4.3.4 Regularity Theory and Asymptotic Analysis 4.4 Tikhonov Regularization and Spectral Analysis 4.4.1 Overview of Tikhonov Regularization 4.4.2 Bounded Linear Operators in Banach Space 4.4.3 Regularization in Hilbert Space or Banach Space 4.5 Basics of Real Analysis 4.5.1 Riemann Integrable 4.5.2 Measure Space 4.5.3 Lebesgue Measurable Function 4.5.4 Pointwise, Uniform, Norm Convergence and Convergence in Measure 4.5.5 Differentiation Theory References 5 Numerical Methods 5.1 Iterative Method for Nonlinear Problem 5.2 Numerical Computation of One-dimensional Heat equation 5.2.1 Explicit Scheme 5.2.2 Implicit Scheme 5.2.3 Crank-Nicolson Method 5.3 Numerical Solution of Linear System of Equations 5.3.1 Direct Method using LU Factorization 5.3.2 Iterative Method using Matrix Splitting 5.3.3 Iterative Method using Steepest Descent Minimization 5.3.4 Conjugate Gradient (CG) Method 5.4 Finite Difference Method (FDM) 5.4.1 Poisson Equation 5.4.2 Elliptic Equation 5.5 Finite Element Method (FEM) 5.5.1 One-dimensional Model 5.5.2 Two-dimensional Model 5.5.3 Numerical Examples References 6 CT, MRI and Image Processing Problems 6.1 X-ray CT 6.1.1 Inverse Problem 6.1.2 Basic Principle and Nonlinear Effects 6.1.3 Inverse Radon Transform 6.1.4 Artifacts in CT 6.2 MRI 6.2.1 Basic Principle 6.2.2 K-space Data 6.2.3 Image Reconstruction 6.3 Image Restoration 6.3.1 Role of p in (6.35) 6.3.2 Total Variation Restoration 6.3.3 Anisotropic Edge-preserving Diffusion 6.3.4 Sparse Sensing 6.4 Segmentation 6.4.1 Active Contour Method 6.4.2 Level Set Method 6.4.3 Motion Tracking for Echocardiography References 7 Electrical Impedance Tomography 7.1 Introduction 7.2 Measurement Method and Data 7.2.1 Conductivity and Resistance 7.2.2 Permittivity and Capacitance 7.2.3 Phasor and Impedance 7.2.4 Admittivity and Trans-impedance 7.2.5 Electrode Contact Impedance 7.2.6 EIT System 7.2.7 Data Collection Protocol and Data Set 7.2.8 Linearity between Current and Voltage 7.3 Representation of Physical Phenomena 7.3.1 Derivation of Elliptic PDE 7.3.2 Elliptic PDE for Four-electrode Method 7.3.3 Elliptic PDE for Two-electrode Method 7.3.4 Min-max Property of Complex Potential 7.4 Forward Problem and Model 7.4.1 Continuous Neumann-to-Dirichlet Data 7.4.2 Discrete Neumann-to-Dirichlet Data 7.4.3 Nonlinearity between Admittivity and Voltage 7.5 Uniqueness Theory and Direct Reconstruction Method 7.5.1 Calderon's Approach 7.5.2 Uniqueness and Three-dimensional Reconstruction: Infinite Measurements 7.5.3 Nachmann's D-bar Method in Two Dimension 7.6 Backprojection Algorithm 7.7 Sensitivity and Sensitivity Matrix 7.7.1 Perturbation and Sensitivity 7.7.2 Sensitivity Matrix 7.7.3 Linearization 7.7.4 Quality of Sensitivity Matrix 7.8 Inverse Problem of EIT 7.8.1 Inverse Problem of RC Circuit 7.8.2 Formulation of EIT Inverse Problem 7.8.3 Ill-posedness of EIT Inverse Problem 7.9 Static Imaging 7.9.1 Iterative Data Fitting Method 7.9.2 Static Imaging using 4-channel EIT System 7.9.3 Regularization 7.9.4 Technical Difficulty of Static Imaging 7.10 Time-difference Imaging 7.10.1 Data Sets for Time-difference Imaging 7.10.2 Equivalent Homogeneous Admittivity 7.10.3 Linear Time-difference Algorithm using Sensitivity Matrix 7.10.4 Interpretation of Time-difference Image 7.11 Frequency-difference Imaging 7.11.1 Data Sets for Frequency-difference Imaging 7.11.2 Simple Difference Ft,ω2− Ft,ω1 7.11.3 Weighted Difference Ft,ω2− [alpha] Ft,ω1 7.11.4 Linear Frequency-difference Algorithm using Sensitivity Matrix 7.11.5 Interpretation of Frequency-difference Image References 8 Anomaly Estimation and Layer Potential Techniques 8.1 Harmonic Analysis and Potential Theory 8.1.1 Layer Potentials and Boundary Value Problems for Laplace Equation 8.1.2 Regularity for Solution of Elliptic Equation along Boundary of Inhomogeneity 8.2 Anomaly Estimation using EIT 8.2.1 Size Estimation Method 8.2.2 Location Search Method 8.3 Anomaly Estimation using Planar Probe 8.3.1 Mathematical Formulation 8.3.2 Representation Formula References 9 Magnetic Resonance Electrical Impedance Tomography 9.1 Data Collection using MRI 9.1.1 Measurement of Bz 9.1.2 Noise in Measured Bz Data 9.1.3 Measurement of B = (Bx,By,Bz) 9.2 Forward Problem and Model Construction 9.2.1 Relation between J , Bz and σ 9.2.2 Three Key Observations 9.2.3 Data Bz Traces σ∇u © e z-directional Change of σ 9.2.4 Mathematical Analysis toward MREIT Model 9.3 Inverse Problem Formulation using B or J 9.4 Inverse Problem Formulation using Bz 9.4.1 Model with Two Linearly Independent Currents 9.4.2 Uniqueness 9.4.3 Defected Bz Data in a Local Region 9.5 Image Reconstruction Algorithm 9.5.1 J-substitution Algorithm 9.5.2 Harmonic Bz Algorithm 9.5.3 Gradient Bz Decomposition and Variational Bz Algorithm 9.5.4 Local Harmonic Bz Algorithm 9.5.5 Sensitivity Matrix Based Algorithm 9.5.6 Anisotropic Conductivity Reconstruction Algorithm 9.5.7 Other Algorithms 9.6 Validation and Interpretation 9.6.1 Image Reconstruction Procedure using Harmonic Bz Algorithm 9.6.2 Conductivity Phantom Imaging 9.6.3 Animal Imaging 9.6.4 Human Imaging 9.7 Applications References 10 Magnetic Resonance Elastography 10.1 Representation of Physical Phenomena 10.1.1 Overview of Hooke's Law 10.1.2 Strain Tensor in Lagrangian Coordinates 10.2 Forward Problem and Model 10.3 Inverse Problem in MRE 10.4 Reconstruction Algorithms 10.4.1 Reconstruction of [mu] with the Assumption of Local Homogeneity 10.4.2 Reconstruction of [mu] without the Assumption of Local Homogeneity 10.4.3 Anisotropic Elastic Moduli Reconstruction 10.5 Technical Issues in MRE References…”
Publicado 2013
Libro electrónico -
10884Publicado 2013Tabla de Contenidos: “…Scattoni, EARLY DIAGNOSIS OF AUTISM SPECTRUM DISORDERS: SUGGESTIONS FROM ANIMAL MODELS -- D. Lenti Boero, C. Lenti, PREMATURE INFANTS' CRY MAINTAINS ABNORMALITIES AT TERM: A SONOSPECTROGRAPHIC STUDY -- S.D. …”
Libro electrónico -
10885
-
10886
-
10887
-
10888
-
10889
-
10890
-
10891
-
10892
-
10893
-
10894
-
10895
-
10896
-
10897
-
10898
-
10899
-
10900