Mostrando 8,761 - 8,780 Resultados de 19,743 Para Buscar '"Succession"', tiempo de consulta: 0.16s Limitar resultados
  1. 8761
    Publicado 1980
    Libro
  2. 8762
    por Berger, John, 1926-2017
    Publicado 2013
    Libro
  3. 8763
    por Jay, Ros
    Publicado 2002
    Libro
  4. 8764
    Publicado 1994
    Libro
  5. 8765
    Publicado 2019
    Tabla de Contenidos: “…Daling Investing in engineering, research and education in Africa to derive a roadmap for ensuring local digital mining success W. Assibey-Bonsu The application of correlation models for the analysis of market risk factors in KGHM capital group Ł. …”
    Libro electrónico
  6. 8766
    Publicado 2019
    Tabla de Contenidos: “…Wolhuter, Corene de Wet & Johannes (Hannes) L. van der Walt 199 -- Abstract 200 -- Introduction 200 -- Learner discipline in schools: Correlates or determinants 202 -- Learner discipline in South African schools and the need for a change in approach 204 -- Finland: The emergence of a noteworthy education system 207 -- The Programme for International Student Assessment studies 207 -- Finland: An unlikely achiever 207 -- The Finnish education system 209 -- Form-giving social-contextual powers 210 -- The education system: Historic development and current structure 211 -- Reasons for the success of the Finnish education system 216 -- What insights could be gleaned from the Finnish experience for the purposes of addressing shortcomings regarding discipline in the South African education system? …”
    Libro electrónico
  7. 8767
    por Robey, Robert
    Publicado 2021
    Tabla de Contenidos: “…-- 1.7.1 Additional reading -- 1.7.2 Exercises -- Summary -- 2 Planning for parallelization -- 2.1 Approaching a new project: The preparation -- 2.1.1 Version control: Creating a safety vault for your parallel code -- 2.1.2 Test suites: The first step to creating a robust, reliable application -- 2.1.3 Finding and fixing memory issues -- 2.1.4 Improving code portability -- 2.2 Profiling: Probing the gap between system capabilities and application performance -- 2.3 Planning: A foundation for success -- 2.3.1 Exploring with benchmarks and mini-apps -- 2.3.2 Design of the core data structures and code modularity -- 2.3.3 Algorithms: Redesign for parallel -- 2.4 Implementation: Where it all happens -- 2.5 Commit: Wrapping it up with quality -- 2.6 Further explorations…”
    Libro electrónico
  8. 8768
    Publicado 2016
    Tabla de Contenidos: “…10.4 Adapting IoT to New Needs: Challenges from Brazil -- 10.4.1 IoT RD&amp -- I Funding in Brazil -- 10.4.2 IoT Success Cases in Brazil -- 10.4.2.1 RFID/IoT Change of Paradigm -- 10.4.2.2 Smart Metering and Smart Grids -- 10.4.3 International Standardisation Related to IoT -- 10.4.4 EU-Brazil Collaboration on IoT -- 10.4.4.1 EU-Brazil Joint Call for IoT Pilots RIAs -- 10.4.4.2 EU-Brazil Mapping and Comparative Study -- 10.4.4.3 The EU-Brazil FUTEBOL Project -- 10.4.4.4 FurtherWork on EU-Brazil Cooperation -- 10.5 Do More with Less: Challenges for Africa. …”
    Libro electrónico
  9. 8769
    por OECD
    Publicado 2020
    Tabla de Contenidos: “…Réformes ayant assoupli les mesures de protection de l'emploi contre les licenciements -- Des réformes successives en France -- Le « Jobs Act » et la suppression de l'indemnité de mobilité en Italie -- Le nouveau Code du travail en Lituanie -- La nouvelle loi sur les relations d'emploi en Slovénie -- Réformes menées dans d'autres pays -- Mesures exceptionnelles en réponse à la crise du COVID-19 -- 3.4.2. …”
    Libro electrónico
  10. 8770
    Tabla de Contenidos: “…Pas de relation évidente de la croissance des dépenses sur des périodes successives -- Incitations et passerelles entre régimes…”
    Libro electrónico
  11. 8771
    por Kumar, K. Udaya
    Publicado 2008
    Tabla de Contenidos: “…17.4 Do an Operation on Two BCD Numbers Based on the Value of X -- 17.5 Bubble Sort in Ascending/Descending Order as per Choice -- 17.6 Selection Sort in Ascending/Descending Order as per Choice -- 17.7 Add Contents of N Word Locations -- 17.8 Multiply Two 8-Bit Numbers (Shift and Add Method) -- 17.9 Multiply two 2-Digit BCD Numbers -- 17.10 Multiply two 16-Bit Binary Numbers -- Questions -- Part III: Programmable and Non-Programmable I/O Ports -- Chapter 18: Interrupts in 8085 -- 18.1 Data Transfer Schemes -- 18.2 General Discussion about 8085 Interrupts -- 18.3 EI and DI Instructions -- 18.4 INTR and INTA* Pins -- 18.5 RST5.5 and RST6.5 Pins -- 18.6 RST7.5 Pin -- 18.7 Trap Interrupt Pin -- 18.8 Execution of 'DAD rp' Instruction -- 18.9 SIM and RIM Instructions -- 18.10 HLT Instruction -- 18.11 Programs using Interrupts -- Questions -- Chapter 19: 8212 Non-Programmable8-Bit I/O Port -- 19.1 Working of 8212 -- 19.2 Applications of 8212 -- Questions -- Chapter 20: 8255 Programmable Peripheral Interface Chip -- 20.1 Description of 8255 PPI -- 20.2 Operational Modes of 8255 -- 20.3 Control Port of 8255 -- 20.4 Mode 1-Strobed I/O -- 20.5 Mode 2-Bi-Directional I/O -- Questions -- Chapter 21: Programs using Interface Modules -- 21.1 Description of Logic Controller Interface -- 21.2 Successive Approximation ADC Interface -- 21.3 Dual Slope ADC Interface -- 21.4 Digital to Analog Converter Interface -- 21.5 Stepper Motor Interface -- Questions -- Part IV: Support Chips -- Chapter 22: Interfacing of I/O Devices -- 22.1 Interfacing 7-Segment Display -- 22.2 Display Interface using Serial Transfer -- 22.3 Interfacing a Simple Keyboard -- 22.4 Interfacing a Matrix Keyboard -- 22.5 Description of Matrix Keyboard Interface -- 22.6 Intel 8279 Keyboard And Display Controller -- 22.7 Programs using 8279 -- Questions…”
    Libro electrónico
  12. 8772
    Publicado 2016
    Tabla de Contenidos: “…Response Times and Throughput -- 5.4.2. Degree of Success in Question Generation -- 5.4.3. User Feedback and Analysis of Question Usefulness -- Early Focus Groups -- In-Depth Evaluation -- 5.5. …”
    Libro electrónico
  13. 8773
    Publicado 2023
    Tabla de Contenidos: “…10.2.1 Traditional Task Allocation Methods -- 10.2.2 Need of Machine Learning in Task Allocation -- 10.3 Machine Learning-Based Task Allocation Model -- 10.4 Conclusion -- References -- Chapter 11 Software Quality Management by Agile Testing -- 11.1 Introduction -- 11.2 A Brief Introduction to JMeter -- 11.3 Review of Literature -- 11.4 Performance Testing Using JMeter -- 11.5 Proposed Work -- 11.6 Results and Discussions -- 11.7 Conclusion -- References -- Chapter 12 A Deep Drive into Software Development Agile Methodologies for Software Quality Assurance -- 12.1 Introduction -- 12.2 Background Work -- 12.2.1 Factors of Quality Assurance in Agility -- 12.3 Understanding Agile Software Methodologies -- 12.3.1 Need for Agile Software Methodology Framework -- 12.4 Agile Methodology Evaluation Framework -- 12.4.1 Extreme Programming (XP) -- 12.4.2 Scrum -- 12.4.3 Lean Development -- 12.4.4 Crystal Methodology -- 12.4.5 Kanban Methodology -- 12.4.6 Feature Driven Development (FDD) Methodology -- 12.4.7 Dynamic System Development Method (DSDM) -- 12.5 Agile Software Development - Issues and Challenges -- 12.6 Conclusion -- References -- Chapter 13 Factors and Techniques for Software Quality Assurance in Agile Software Development -- 13.1 Introduction -- 13.1.1 Values of the Agile Manifesto -- 13.1.2 The Twelve Agile Manifesto Principles -- 13.1.3 Agile for Software Quality Assurance -- 13.2 Literature Review -- 13.3 Agile Factors in Quality Assurance -- 13.3.1 Success Factors -- 13.3.2 Failure Factors -- 13.4 Quality Assurance Techniques -- 13.5 Challenges and Limitations of Agile Technology -- 13.6 Conclusion and Future Scope -- References -- Chapter 14 Classification of Risk Factors in Distributed Agile Software Development Based on User Story -- 14.1 Introduction -- 14.2 Software Risk Management -- 14.2.1 Risk Assessment -- 14.3 Literature Review…”
    Libro electrónico
  14. 8774
    Publicado 2023
    Tabla de Contenidos: “…3.3.3 Graceful terminations -- 3.3.4 Folder watcher -- 3.3.5 Action scripts -- 3.4 Running watchers -- 3.4.1 Testing watcher execution -- 3.4.2 Scheduling watchers -- Summary -- 4 Handling sensitive data -- 4.1 Principles of automation security -- 4.1.1 Do not store sensitive information in scripts -- 4.1.2 Principle of least privilege -- 4.1.3 Consider the context -- 4.1.4 Create role-based service accounts -- 4.1.5 Use logging and alerting -- 4.1.6 Do not rely on security through obscurity -- 4.1.7 Secure your scripts -- 4.2 Credentials and secure strings in PowerShell -- 4.2.1 Secure strings -- 4.2.2 Credential objects -- 4.3 Storing credentials and secure strings in PowerShell -- 4.3.1 The SecretManagement module -- 4.3.2 Set up the SecretStore vault -- 4.3.3 Set up a KeePass vault -- 4.3.4 Choosing the right vault -- 4.3.5 Adding secrets to a vault -- 4.4 Using credentials and secure strings in your automations -- 4.4.1 SecretManagement module -- 4.4.2 Using Jenkins credentials -- 4.5 Know your risks -- Summary -- 5 PowerShell remote execution -- 5.1 PowerShell remoting -- 5.1.1 Remote context -- 5.1.2 Remote protocols -- 5.1.3 Persistent sessions -- 5.2 Script considerations for remote execution -- 5.2.1 Remote execution scripts -- 5.2.2 Remote execution control scripts -- 5.3 PowerShell remoting over WSMan -- 5.3.1 Enable WSMan PowerShell remoting -- 5.3.2 Permissions for WSMan PowerShell remoting -- 5.3.3 Execute commands with WSMan PowerShell remoting -- 5.3.4 Connect to the desired version of PowerShell -- 5.4 PowerShell remoting over SSH -- 5.4.1 Enable SSH PowerShell remoting -- 5.4.2 Authenticating with PowerShell and SSH -- 5.4.3 SSH environment considerations -- 5.4.4 Execute commands with SSH PowerShell remoting -- 5.5 Hypervisor-based remoting -- 5.6 Agent-based remoting -- 5.7 Setting yourself up for success with PowerShell remoting…”
    Libro electrónico
  15. 8775
    Publicado 2024
    Tabla de Contenidos: “…6.6 Relationships of IoT and AI Strengthen the Agriculture Sector -- 6.7 Benefits of IoT in Agriculture -- 6.8 The Role of AI in Tomorrow's Farming -- 6.8.1 How Artificial Intelligence (AI) Can Help the Farming Industry -- 6.8.2 Selecting Seeds and Plants With the Help of AI -- 6.8.3 Use of Artificial Intelligence in Farming -- 6.8.4 A Predictive Model for Yield Using Artificial Intelligence -- 6.8.5 Implementing AI for Weed and Pest Management -- 6.8.6 AI-Powered Inventory Management and Sales Promotion -- 6.9 Robots in Agriculture-Perceptions and Pros, Cons -- 6.9.1 Farming Equipment With Automated Functions and the Positive Effects -- 6.10 Complications Associated With Robots Used in Agriculture -- 6.10.1 Difficulties and Limitations to be Conquered -- 6.10.2 Successful Applications and Other Case Studies -- 6.10.3 Societal and Ethical Implications -- 6.11 Conclusion -- References -- Chapter 7 Data Analytics in Agriculture: Predictive Models and Real-Time Decision-Making -- 7.1 Introduction -- 7.2 Data Collection and Management in Agriculture -- 7.2.1 Soil Sensors -- 7.2.2 Weather Stations -- 7.2.3 Drones -- 7.2.4 Satellite Imagery -- 7.2.5 Farm Machinery -- 7.2.6 Pest and Disease Monitoring Systems -- 7.2.7 Market Data -- 7.2.8 Crop Records -- 7.2.9 Livestock Records -- 7.3 Challenges in Collecting and Managing Agricultural Data -- 7.4 Strategies for Effective Data Collection and Management -- 7.5 Predictive Models in Agriculture -- 7.5.1 Types of Predictive Models -- 7.6 Applications of Predictive Models in Agriculture -- 7.7 Real-Time Decision-Making in Agriculture -- 7.7.1 Importance of Real-Time Decision-Making in Agriculture -- 7.7.2 Tools and Technologies for Real-Time Decision Making -- 7.8 Integration of Predictive Models and Real-Time Decision Making in Agriculture…”
    Libro electrónico
  16. 8776
    Publicado 2025
    Tabla de Contenidos: “…3.2.1 Self-Mixed Anaerobic Digester (SMAD) for the Treatment Poultry Litter: Development and Demonstration -- 3.2.2 Anaerobic Gas Lift Reactor (AGR): Concept to Commissioning and Commercialization -- 3.2.2.1 Configuration and Working of AGR Technology -- 3.2.2.2 Demonstration and Performance Assessment of High-Rate Biomethanation Plant Based On AGR -- 3.2.3 Commercialization and Success Stories of AGR Technology -- 3.2.3.1 Model I: Waste to Energy From Kitchen to Kitchen, Biogas Plant at CSIR-IICT, Hyderabad -- 3.2.3.2 Model II: Biogas Plants Based On Organic Fraction of MSW to Power -- 3.2.3.3 Model III: Biogas Plants Based On Market and Vegetable Waste to Power -- 3.2.4 National Recognition of AGR Technology -- 3.2.5 Techno-Commercial Aspects of the Biogas Plants Against Their Capacities -- 3.2.6 Future Scope in the Biogas Industry -- 3.3 Conclusions -- Acknowledgements -- References -- 4 Cyanobacterial Degradation of Pesticides -- 4.1 Introduction -- 4.2 Pesticides - A Growing Concern -- 4.3 Impact of Pesticides On Human Health -- 4.4 Biodegradation of Pesticides -- 4.5 Cyanobacteria - A Precious Bioresource -- 4.6 Cyanobacteria as Bioremediating Agents -- 4.6.1 Cyanobacterial Degradation of Organophosphorus Pesticides -- 4.6.2 Cyanobacterial Degradation of Organochlorine Pesticides -- 4.7 Future Perspectives -- 4.8 Conclusion -- References -- 5 Upcycling of Plastic Waste -- 5.1 Introduction -- 5.2 Conventional Techniques of Plastic Waste Management -- 5.2.1 Mechanical Recycling -- 5.2.2 Waste to Energy -- 5.2.3 Landfilling -- 5.3 Plastic Waste Upcycling Techniques -- 5.3.1 Thermal Upcycling Technique -- 5.3.1.1 Carbonization -- 5.3.1.2 Pyrolysis -- 5.3.1.3 Gasification -- 5.3.2 Chemical Upcycling Techniques -- 5.3.2.1 Solvolysis -- 5.3.2.2 Hydrogenolysis -- 5.3.2.3 Photocatalysis -- 5.3.3 Chemo-Biotechnological Technique…”
    Libro electrónico
  17. 8777
    Publicado 2025
    Tabla de Contenidos: “…1.15.5 Superconductors -- 1.15.6 3D printing -- 1.15.7 Autonomous vehicle -- 1.16 Conclusion -- References -- Chapter 2: Advances of deep learning and related applications -- 2.1 Introduction -- 2.2 Deep learning techniques -- 2.3 Multilayer perceptron -- 2.4 Convolutional neural network -- 2.5 Recurrent neural network -- 2.6 Long-term short-term memory -- 2.7 GRU -- 2.8 Autoencoders -- 2.9 Attention mechanism -- 2.10 Deep generative models -- 2.11 Restricted Boltzmann machine -- 2.12 Deep belief network -- 2.13 Modern deep learning platforms -- 2.13.1 PyTorch -- 2.13.2 TensorFlow -- 2.13.3 Keras -- 2.13.4 Caffe (Convolutional architecture for fast feature embedding) and Caffe2 -- 2.13.5 Deeplearning4j -- 2.13.6 Theano -- 2.13.7 Microsoft cognitive toolkit (CNTK) -- 2.14 Challenges of deep learning -- 2.15 Applications of deep learning -- 2.16 Conclusion -- References -- Chapter 3: Machine learning for big data and neural networks -- 3.1 Introduction -- 3.2 Machine learning and fundamentals -- 3.2.1 Supervised learning -- 3.2.2 Decision trees -- 3.2.3 Linear regression -- 3.2.4 Naive Bayes -- 3.2.5 Logistic regression -- 3.3 Unsupervised learning -- 3.3.1 K-Means algorithm -- 3.3.2 Principal component analysis -- 3.4 Reinforcement learning -- 3.5 Machine learning in large-scale data -- 3.6 Data analysis in big data -- 3.7 Predictive modelling -- 3.7.1 Understanding customer behavior and preferences -- 3.7.2 The role of supply chain and performance management in organizational success -- 3.7.3 Management of quality and enhancement -- 3.7.4 Risk mitigation and detection of fraud -- 3.8 Neural networks -- 3.8.1 Artificial neural network -- 3.8.2 RNN -- 3.8.3 CNN -- 3.8.4 Deep learning using convolutional neural networks to find building defects -- 3.9 Data generation and manipulation -- 3.9.1 Generative Adversarial Networks…”
    Libro electrónico
  18. 8778
    por Bansal, Payal
    Publicado 2024
    Tabla de Contenidos: “…Cover -- Half Title -- Series Information -- Title Page -- Copyright Page -- Table of Contents -- Aim and Scope -- Preface -- About the Editors -- Contributors -- Acknowledgment -- Chapter 1 Digital Manufacturing: Artificial Intelligence in Industry 5.0 -- 1.1 Introduction -- 1.2 Transformative Journey: Industry 1.0 to 5.0 -- 1.3 Artificial Intelligence in Industry 5.0 -- 1.3.1 AI-Powered Digital Manufacturing Processes -- 1.3.2 AI-Powered Smart Automation and Robotics -- 1.3.3 AI-Powered Supply Chain Optimization -- 1.3.4 AI-Powered Product Quality and Inspection -- 1.3.5 Human-Machine Collaboration in Industry 5.0 -- 1.3.6 AI-Powered Digital Twins -- 1.3.6.1 Digital Twins Applications -- 1.4 Success Stories in AI-Powered Manufacturing -- 1.4.1 Case 1: Ford Motors-Predictive Maintenance With AI -- 1.4.2 Case 2: Boeing-AI-Powered Defect Detection in Aircraft Manufacturing -- 1.4.3 Case 3: Adidas-AI-Driven Demand Forecasting and Customization -- 1.4.4 Case 4: Siemens-AI-Powered Optimization of Production Lines -- 1.4.5 Case 5: Schneider Electric-AI-Powered Supply Chain Management -- 1.5 Challenges and Opportunities -- 1.6 Conclusion -- References -- Chapter 2 The Rise of Industry 5.0: How Artificial Intelligence Is Shaping the Future of Manufacturing -- 2.1 Introduction -- 2.1.1 First Industrial Revolution (Eighteenth to Nineteenth Century) -- 2.1.2 Second Industrial Revolution (After Nineteenth to Before Twentieth Century) -- 2.1.3 Third Industrial Revolution (Late Twentieth Century) -- 2.1.4 Fourth Industrial Revolution (Twenty-First Century) -- 2.2 Characteristics of Industry 5.0 -- 2.3 Importance of AI in Industry 5.0 -- 2.3.1 Techniques and Approaches -- 2.3.2 Challenges and Considerations -- 2.4 Importance of AI in Industrial Transformation -- 2.5 Key Drivers for AI Adoption in Industry 5.0 -- 2.6 Applications of AI in Industry 5.0.…”
    Libro electrónico
  19. 8779
    por Sagar, Shrddha
    Publicado 2025
    Tabla de Contenidos: “…5.11.3 Smart Micro-Grid -- 5.11.4 Demand Side -- 5.11.5 Virtualization -- 5.12 Conclusion -- References -- Chapter 6 IOT-Based Advanced Energy Management in Smart Factories -- 6.1 Introduction -- 6.2 Smart Factory Benefits of IOT-Based Advanced Energy Management -- 6.3 Role of IOT Technology in Energy Management -- 6.4 Developing an IOT Information Model for Energy Efficiency -- 6.5 Integrating Intelligent Energy Systems (IES) and Demand Response (DR) -- 6.6 How to Accurately Measure and Manage Your Energy Usage -- 6.7 Introduction to Energy Efficiency Measures -- 6.8 Identifying Opportunities to Reduce Energy Use -- 6.9 Monitoring and Measuring Energy Usage -- 6.10 Establishing Accounting and Incentives -- 6.11 Sustaining the Long-Term Benefits of Optimized Energy Usage -- 6.12 Role of Cyber Security When Implementing IoT-Based Advanced Energy Solutions -- 6.13 Materials Required in Smart Factories -- 6.14 Methods in IoT-Based Smart Factory Implementation -- 6.15 Steps for Developing an IoT-Based Energy Management System -- 6.15.1 Assess Current Energy Usage -- 6.15.2 Develop an Energy Conservation Plan -- 6.15.3 Implement IoT Technology -- 6.15.4 Monitor Results -- 6.16 Challenges For Adopting IoT-Based Energy Management Systems -- 6.16.1 Big Data and Analytics -- 6.16.2 Connectivity Constraints -- 6.16.3 Data Security and Privacy Issues -- 6.16.4 Device Troubleshooting -- 6.17 Recommendations for Overcoming the Challenges With Implementing IoT-Based Advanced Energy Solution -- 6.17.1 IoT-Enabled Automation -- 6.17.2 Smart Sensors -- 6.17.3 Predictive Analytics -- 6.18 Case Studies -- 6.18.1 Automated Demand Response (ADR) -- 6.18.2 Automated Maintenance -- 6.18.3 Predictive Analytics -- 6.19 Case Studies for Successful Implementation -- 6.20 Applications -- 6.21 Different Techniques for Monitoring and Control of IoT Devices…”
    Libro electrónico
  20. 8780
    Publicado 2014
    Tabla de Contenidos: “…International reserves in months of import -- International reserve and short-term debt -- International reserve and broad money -- 8.4 Data Description -- 8.5 Empirical Models and Results -- 8.6 Conclusion -- Acknowledgment -- References -- Part Tow: Market Developments and Governance Issues -- 9 Singapore's Financial Market: Challenges and Future Prospects -- 9.1 Introduction -- 9.2 Growth of the Financial Sector -- 9.2.1 Singapore's Financial Sector Success Factors -- 9.2.2 The Development, Regulatory, and Supervisory Phases -- The development phase -- The regulatory phase -- The supervisory phase -- 9.3 The Prospects -- 9.4 The Challenges -- 9.4.1 The Flood, the Reservoir, and Finance -- 9.4.2 High-Frequency Trading and H -- 9.4.3 Asian Crisis: Lesson Learned -- 9.4.4 Spain's Banking Crisis -- 9.5 The Instability Paradox -- 9.6 Micro- and Macroprudential Policies -- 9.7 Conclusion -- References -- 10 Wealth Management: A Comparison of Switzerland, Singapore, and Hong Kong -- 10.1 Introduction -- 10.2 Switzerland -- 10.3 Singapore -- 10.4 Hong Kong -- 10.5 A Comparison of Switzerland, Singapore, and Hong Kong -- 10.6 Voices of Practitioners in Singapore -- 10.7 Conclusion -- References -- 11 Asian Market Reactions to US Macroeconomic News Surprises -- 11.1 Introduction -- 11.2 Data -- 11.2.1 Stock Market Data -- 11.2.2 Announcement Data -- 11.3 Methodology -- 11.4 Empirical Results -- 11.5 Conclusion -- Acknowledgment -- References -- 12 Monetary Policy in Taiwan: The Implications of Liquidity -- 12.1 Introduction -- 12.2 Financial Innovation and the Divisia Monetary Aggregate in Taiwan -- 12.3 Data and Methodology -- 12.3.1 Divisia Aggregation -- 12.3.2 Divisia Money and the Official Aggregates -- 12.3.3 Data -- 12.4 Results and Discussions -- 12.4.1 Data Selection -- 12.4.2 VAR Identification -- 12.5 Conclusion -- References…”
    Libro electrónico