Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Big data 159
- Data mining 110
- Spark (Electronic resource : Apache Software Foundation) 107
- Machine learning 79
- Electronic data processing 71
- Python (Computer program language) 58
- Apache Hadoop 57
- Management 50
- Application software 49
- Cloud computing 49
- Distributed processing 49
- Development 48
- Database management 43
- Computer programs 36
- Artificial intelligence 32
- Data processing 31
- History 24
- Historia 23
- Design 21
- Open source software 21
- Leadership 19
- Novela inglesa 19
- Big Data 17
- Computer programming 17
- Java (Computer program language) 17
- Scala (Computer program language) 17
- Information technology 16
- Success in business 16
- Technological innovations 16
- Creative ability in business 15
-
841Publicado 2020Tabla de Contenidos: “…-- How we crush creativity early on -- Reigniting and harnessing the creative spark -- Why are bad ideas still good ideas? -- Green is good for creativity -- Part 3: Stories and top tips -- Sleepiness removes constraints . . . -- . . . but sometimes constraint is good -- Do the opposite to what people expect -- Innovator or fast follower? …”
Libro electrónico -
842Publicado 2024Tabla de Contenidos: “…Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- About the Editors -- Contributors -- Chapter 1: Paralysis support system using IoT -- 1.1 Introduction -- 1.2 Literature review -- 1.3 Proposed healthcare system -- 1.4 System architecture -- 1.4.1 ESP32-NODE MCU -- 1.4.2 Gyro and accelerometer sensor -- 1.4.3 RF module -- 1.4.4 Encoder and decoder -- 1.4.5 LCD display -- 1.4.6 Arduino IDE -- 1.5 Results and discussion -- 1.6 Conclusion and future scope -- References -- Chapter 2: Blockchain and its applications: A review -- 2.1 Introduction -- 2.2 Blockchain architecture -- 2.3 Working of blockchain -- 2.4 Application -- 2.4.1 Healthcare -- 2.4.2 Education -- 2.4.3 Insurance -- 2.4.4 E-Commerce -- 2.4.5 Transportation -- 2.4.6 Industry of strength -- 2.5 Conclusion -- References -- Chapter 3: Data analytics tools for smart cities and smart towns -- 3.1 Introduction -- 3.2 The concept of big data analytics -- 3.3 The concept of smart cities -- 3.3.1 Data storage in smart cities -- 3.4 Need for data analytics in smart cities -- 3.4.1 Reliability -- 3.4.2 Transport -- 3.4.3 Planning -- 3.4.4 Future proofing -- 3.4.5 Effective spending -- 3.4.6 Sustainability -- 3.5 Data analytics tools -- 3.6 Data analytics tools for smart cities and towns -- 3.6.1 Hadoop -- 3.6.2 Map Reduce -- 3.6.3 Apache storm -- 3.6.4 Apache spark -- 3.6.5 Apache Flink -- 3.6.6 Flume -- 3.7 Conclusion -- References -- Chapter 4: Industrial Internet of Things and its applications in Industry 4.0 through sensor integration for a process parameter monitor and control -- 4.1 Introduction -- 4.2 Problem statement -- 4.3 Objective -- 4.4 Related works -- 4.4.1 Inferences through the survey -- 4.5 Existing methodology -- 4.5.1 Level process station -- 4.5.2 Monitoring and control of level process -- 4.5.3 SCADA…”
Libro electrónico -
843por Mathura, SanyaTabla de Contenidos: “…-- 11.5 Women in STEM as Drivers of Innovation -- About the Author -- References -- Chapter 12: Safety Boots to Break Glass CeilingsTM -- 12.1 Passions Collide -- 12.2 The Spark -- 12.3 A Sign -- 12.4 The Groundwork -- 12.5 The Design -- 12.6 Manufacturing -- 12.7 The Launch -- 12.8 Loyalty -- 12.9 Hazard Girls -- 12.10 Holding Our Breath -- 12.11 Customer Stories -- 12.12 Gratitude -- 12.13 Conclusion -- About the Author -- Note -- Chapter 13: Intersectionality: How to Transform Headwinds to Tailwinds -- 13.1 What Is Intersectionality?…”
Publicado 2024
Libro electrónico -
844Publicado 2023“…Programming skills in SQL, Spark, and Python are beneficial but not mandatory. …”
Video -
845
-
846Publicado 2016“…Video tutorials in this Learning Path will show you how to use Python for distributed task processing, perform large-scale data processing in Spark using the PySpark API, and tackle machine learning tasks with Python."…”
Vídeo online -
847
-
848Publicado 2017Tabla de Contenidos:Libro electrónico
-
849Publicado 2021“…Discover the capabilities of PySpark and its application in the realm of data science. …”
Libro electrónico -
850
-
851Publicado 2017“…Patrick then demonstrates that with the addition of Spark and Kafka, you can maintain a highly distributed, fault-tolerant, and scaling solution. …”
-
852Publicado 2017“…The 23 tutorials included in the compilation cover big data topics such as a review of Apache Spark 2.0 core concepts; an exploration of stream processing from the basics through Apache Beam; a practical look at how to do scalable, end-to-end data science in R on single machines and on Spark clusters; overviews of how to get started in Tensor Flow, architect a data platform, Scala and Spark, build data applications in AWS, build a data pipeline with Kafka, secure your Hadoop clusters; and how to visualize large, complex datasets with R, Hadoop, and Spark. …”
-
853Publicado 2017“…This video teaches you how to deploy machine learning models behind a REST API—to serve low latency requests from applications—without using a Spark cluster. In the process, you'll learn how to export models trained in SparkML; how to work with Docker, a convenient way to build, deploy, and ship application code for microservices; and how a model scoring service should support single on-demand predictions and bulk predictions. …”
-
854
-
855Publicado 2021Tabla de Contenidos: “…8.4.1 Internet Infrastructure -- 8.4.2 High Hardware and Software Cost -- 8.4.3 Less Qualified Workforce -- 8.5 Conclusion and Discussion -- References -- Chapter 9 Application of High-Performance Computing in Synchrophasor Data Management and Analysis for Power Grids -- 9.1 Introduction -- 9.2 Applications of Synchrophasor Data -- 9.2.1 Voltage Stability Analysis -- 9.2.2 Transient Stability -- 9.2.3 Out of Step Splitting Protection -- 9.2.4 Multiple Event Detection -- 9.2.5 State Estimation -- 9.2.6 Fault Detection -- 9.2.7 Loss of Main (LOM) Detection -- 9.2.8 Topology Update Detection -- 9.2.9 Oscillation Detection -- 9.3 Utility Big Data Issues Related to PMU-Driven Applications -- 9.3.1 Heterogeneous Measurement Integration -- 9.3.2 Variety and Interoperability -- 9.3.3 Volume and Velocity -- 9.3.4 Data Quality and Security -- 9.3.5 Utilization and Analytics -- 9.3.6 Visualization of Data -- 9.4 Big Data Analytics Platforms for PMU Data Processing -- 9.4.1 Hadoop -- 9.4.2 Apache Spark -- 9.4.3 Apache HBase -- 9.4.4 Apache Storm -- 9.4.5 Cloud-Based Platforms -- 9.5 Conclusions -- References -- Chapter 10 Intelligent Enterprise-Level Big Data Analytics for Modeling and Management in Smart Internet of Roads -- 10.1 Introduction -- 10.2 Fully Convolutional Deep Neural Network for Autonomous Vehicle Identification -- 10.2.1 Detection of the Bounding Box of the License Plate -- 10.2.2 Segmentation Objective -- 10.2.3 Spatial Invariances -- 10.2.4 Model Framework -- 10.2.4.1 Increasing the Layer of Transformation -- 10.2.4.2 Data Format of Sample Images -- 10.2.4.3 Applying Batch Normalization -- 10.2.4.4 Network Architecture -- 10.2.5 Role of Data -- 10.2.6 Synthesizing Samples -- 10.2.7 Invariances -- 10.2.8 Reducing Number of Features -- 10.2.9 Choosing Number of Classes -- 10.3 Experimental Setup and Results -- 10.3.1 Sparse Softmax Loss…”
Libro electrónico -
856Publicado 2023“…He conducts seminars on distributed processing using Spark, real-time streaming and analytics, and best practices for ETL and data governance. …”
Video -
857Publicado 2016“…Viewers will learn: Benefits of deep learning over other machine learning techniques Advances in the field Elements of deep learning workflows, including how to address common challenges How to handle large-scale distributed training of neural networks, using TensorFlow A scalable implementation of deep neural networks for Spark How to use SparkNet to construct deep networks using existing libraries…”
-
858
-
859
-
860Publicado 2023“…This book includes the RecSys platform components, relevant MLOps tools in your stack, plus code examples and helpful suggestions in PySpark, SparkSQL, FastAPI, and Weights & Biases…”
Libro electrónico