Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Big data 159
- Data mining 110
- Spark (Electronic resource : Apache Software Foundation) 107
- Machine learning 79
- Electronic data processing 71
- Python (Computer program language) 58
- Apache Hadoop 57
- Management 50
- Application software 49
- Cloud computing 49
- Distributed processing 49
- Development 48
- Database management 43
- Computer programs 36
- Artificial intelligence 32
- Data processing 31
- History 24
- Historia 23
- Design 21
- Open source software 21
- Leadership 19
- Novela inglesa 19
- Big Data 17
- Computer programming 17
- Java (Computer program language) 17
- Scala (Computer program language) 17
- Information technology 16
- Success in business 16
- Technological innovations 16
- Creative ability in business 15
-
441
-
442
-
443
-
444
-
445
-
446Publicado 2015Tabla de Contenidos: “…Learning Apache Cassandra / Ruth Stryker -- Introduction to Apache Kafka / Gwen Shapira -- Introduction to Apache Spark / Paco Nathan -- Large-scale real-time stream processing and analytics -- An introduction to time series with Team Apache / Patrick McFadin…”
Vídeo online -
447Publicado 2018“…Actualidad e importancia de la implementación de Big Data utilizando las herramientas Hadoop y Spark. Lámpsakos…”
Libro electrónico -
448
-
449
-
450
-
451
-
452
-
453
-
454Publicado 2021Tabla de Contenidos: “…. -- Chapter 3: Understanding Spark Query Execution -- Technical requirements -- Introduction to jobs, stages, and tasks -- Getting ready -- How to do it... -- How it works... -- Checking the execution details of all the executed Spark queries via the Spark UI -- Getting ready -- How to do it... -- How it works... -- Deep diving into schema inference -- Getting ready -- How to do it... -- How it works... -- There's more... -- Looking into the query execution plan -- Getting ready -- How to do it... -- How it works... -- How joins work in Spark -- Getting ready -- How to do it... -- How it works... -- There's more... -- Learning about input partitions -- Getting ready -- How to do it... -- How it works... -- Learning about output partitions -- Getting ready -- How to do it... -- How it works... -- Learning about shuffle partitions -- Getting ready -- How to do it... -- How it works... -- Storage benefits of different file types -- Getting ready -- How to do it... -- How it works... -- Chapter 4: Working with Streaming Data -- Technical requirements -- Reading streaming data from Apache Kafka -- Getting ready -- How to do it... -- How it works... -- Reading streaming data from Azure Event Hubs -- Getting ready -- How to do it... -- How it works... -- Reading data from Event Hubs for Kafka -- Getting ready -- How to do it... -- How it works... -- Streaming data from log files -- Getting ready -- How to do it... -- How it works... -- Understanding trigger options -- Getting ready -- How to do it... -- How it works... -- Understanding window aggregation on streaming data -- Getting ready -- How to do it... -- How it works... -- Understanding offsets and checkpoints -- Getting ready -- How to do it...…”
Libro electrónico -
455Publicado 2019Tabla de Contenidos: “…Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Chapter 1: Pyspark and Setting up Your Development Environment -- An overview of PySpark -- Spark SQL -- Setting up Spark on Windows and PySpark -- Core concepts in Spark and PySpark -- SparkContext -- Spark shell -- SparkConf -- Summary -- Chapter 2: Getting Your Big Data into the Spark Environment Using RDDs -- Loading data on to Spark RDDs -- The UCI machine learning repository -- Getting the data from the repository to Spark -- Getting data into Spark -- Parallelization with Spark RDDs -- What is parallelization? …”
Libro electrónico -
456Publicado 2018Tabla de Contenidos: “…Scala Programming Projects: Build real-world projects using popular Scala frameworks such as Play, Akka, and Spark…”
Libro electrónico -
457Publicado 2018Tabla de Contenidos: “…Kunst mit Deep Learning -- Bilderkennung und Klassifizierung -- Deep Dreaming -- Deep Dreaming in der Cloud -- Prognosen von Zeitreihen -- Kapitel 7: Deep Learning und Big Data -- TensorFlow verteilen -- Caffe2 verteilen -- Spark und Deep Learning -- TensorFrames -- Intels BigDL -- SparkNet -- CaffeOnSpark -- TensorFlowOnSpark -- Deep Learning und die Amazon-Cloud -- Googles Cloud Platform -- Kapitel 8: Deep Learning produktiv -- Modellgüte bewerten -- Trainingsdaten und Testdaten -- Konfusionsmatrix -- Mittlere quadratische Abweichung -- Mittlere absolute Abweichung -- R2 -- Bias -- Underfitting und Overfitting -- Modelle einfrieren -- Modelle nutzen -- Entwicklungspipeline -- Laufzeitumgebungen -- TensorFlow Serving -- AWS Lambda -- Anhang: Arbeiten mit dem Docker-Container -- Index -- Über den Autor -- Kolophon…”
Libro electrónico -
458
-
459
-
460