Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Ciencias sociales 269
- Metodología 164
- metodología 140
- Investigación 137
- Research 119
- Sociología 119
- investigaciones 112
- Medios de comunicación social 106
- Historia 92
- Educación 90
- Aspectos sociales 89
- aspectos sociales 88
- Psychology 69
- Investigació 65
- Zeitschrift 64
- Psicología 56
- Filosofía 55
- Diseases 54
- Metodologia 52
- History 50
- Management 50
- Education 49
- Study and teaching 49
- Ciències socials 47
- Marketing 47
- Sociology 46
- Social aspects 44
- Social sciences 44
- Familia 41
- Política 41
-
3681
-
3682
-
3683
-
3684
-
3685
-
3686
-
3687Publicado 2022Tabla de Contenidos: “…Cover -- Title Page -- Copyright and Credits -- Foreword -- Contributors -- Table of Contents -- Preface -- Section 1: Fundamentals of the Automated Machine Learning Process and AutoML on AWS -- Chapter 1: Getting Started with Automated Machine Learning on AWS -- Technical requirements -- Overview of the ML process -- Complexities in the ML process -- An example of the end-to-end ML process -- Introducing ACME Fishing Logistics -- The case for ML -- Getting insights from the data -- Building the right model -- Training the model -- Evaluating the trained model -- Exploring possible next steps -- Tuning our model -- Deploying the optimized model into production -- Streamlining the ML process with AutoML -- How AWS makes automating the ML development and deployment process easier -- Summary -- Chapter 2: Automating Machine Learning Model Development Using SageMaker Autopilot -- Technical requirements -- Introducing the AWS AI and ML landscape -- Overview of SageMaker Autopilot -- Overcoming automation challenges with SageMaker Autopilot -- Getting started with SageMaker Studio -- Preparing the experiment data -- Starting the Autopilot experiment -- Running the Autopilot experiment -- Post-experimentation tasks -- Using the SageMaker SDK to automate the ML experiment -- Codifying the Autopilot experiment -- Analyzing the Autopilot experiment with code -- Deploying the best candidate -- Cleaning up -- Summary -- Chapter 3: Automating Complicated Model Development with AutoGluon -- Technical requirements -- Introducing the AutoGluon library -- Using AutoGluon for tabular data -- Prerequisites -- Creating the AutoML experiment with AutoGluon -- Evaluating the experiment results -- Using AutoGluon for image data -- Prerequisites -- Creating an image prediction experiment -- Evaluating the experiment results -- Summary…”
Libro electrónico -
3688Publicado 1997Biblioteca Universitat Ramon Llull (Otras Fuentes: Biblioteca de la Universidad Pontificia de Salamanca)Libro
-
3689Publicado 2017Biblioteca Universidad de Deusto (Otras Fuentes: Biblioteca Universitat Ramon Llull)Libro
-
3690por Dicken, Peter
Publicado 2007Biblioteca Universitat Ramon Llull (Otras Fuentes: Biblioteca Universidad de Deusto)Libro -
3691
-
3692
-
3693
-
3694
-
3695
-
3696
-
3697
-
3698Publicado 1998Revista digital
-
3699
-
3700