Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Artificial intelligence 56
- Computer programs 28
- Natural language generation (Computer science) 27
- Natural language processing (Computer science) 21
- Jazz 20
- Machine learning 14
- Numismática latina 11
- Historia 8
- Cloud computing 7
- Development 7
- History 7
- Application software 6
- ChatGPT 6
- Data processing 6
- Management 6
- Música para piano (Jazz) 6
- Blues 5
- Business 5
- Música orquestal 5
- Amazon Web Services (Firm) 4
- British Museum 4
- History and criticism 4
- numismática latina 4
- Application program interfaces (Computer software) 3
- Chatbots 3
- Client/server computing 3
- Crítica e interpretación 3
- Monedas romanas 3
- Mujeres 3
- Música 3
-
1
-
2por Hawkes, Terence
Publicado 2005Universidad Loyola - Universidad Loyola Granada (Otras Fuentes: Biblioteca de la Universidad Pontificia de Salamanca)Enlace del recurso
Libro electrónico -
3
-
4
-
5
-
6Publicado 2024“…In this video shortcuts collection, you will learn how Vector databases and the vectorization of data are essential components that enable the retrieval-augmented generation (RAG) approach, allowing AI models to access and leverage relevant external information to improve the accuracy, reliability, and transparency of their outputs. …”
Vídeo online -
7
-
8
-
9Publicado 1976Tabla de Contenidos: “…Dallas rag (Dallas String Band) -- Southern rag (Blind Blake) -- Dew Drop Alley (Sugar Underwood) -- Piccolo rag (Blind Boy Fuller) -- Atlanta rag (Cow Cow Davenport) -- Kill it kid (Blind Willie McTell) -- The entertainer (Bunk Johnson andhis band) -- Maple leaf rag (Rev. …”
Grabación musical -
10
-
11
-
12Publicado 2024Tabla de Contenidos: “…Cover -- Copyright Page -- Contributors -- Table of Contents -- Preface -- Chapter 1: Why Retrieval Augmented Generation? -- What is RAG? -- Naïve, advanced, and modular RAG configurations -- RAG versus fine-tuning -- The RAG ecosystem -- The retriever (D) -- Collect (D1) -- Process (D2) -- Storage (D3) -- Retrieval query (D4) -- The generator (G) -- Input (G1) -- Augmented input with HF (G2) -- Prompt engineering (G3) -- Generation and output (G4) -- The evaluator (E) -- Metrics (E1) -- Human feedback (E2) -- The trainer (T) -- Naïve, advanced, and modular RAG in code -- Part 1: Foundations and basic implementation -- 1. …”
Libro electrónico -
13
-
14Publicado 2024“…In this video shortcuts collection, you will learn how Vector databases and the vectorization of data are essential components that enable the retrieval-augmented generation (RAG) approach, allowing AI models to access and leverage relevant external information to improve the accuracy, reliability, and transparency of their outputs. …”
Vídeo online -
15Publicado 2024“…In this video shortcuts collection, you will learn how Vector databases and the vectorization of data are essential components that enable the retrieval-augmented generation (RAG) approach, allowing AI models to access and leverage relevant external information to improve the accuracy, reliability, and transparency of their outputs. …”
Vídeo online -
16
-
17Publicado 2024“…The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes. The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. …”
Libro electrónico -
18Publicado 2024“…In this course, you will learn how to leverage Vector Databases to store and retrieve relevant information for Retrieval Augmented Generation (RAG) models. You will gain insights into enhancing the accuracy and trustworthiness of large language models by integrating them with Vector Databases as external knowledge bases, effectively mitigating hallucinations. …”
Vídeo online -
19
-
20Publicado 2024“…In this video shortcuts collection, you will learn how Vector databases and the vectorization of data are essential components that enable the retrieval-augmented generation (RAG) approach, allowing AI models to access and leverage relevant external information to improve the accuracy, reliability, and transparency of their outputs. …”
Vídeo online