Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Biblia 3,187
- Historia 3,141
- Història 2,571
- Església Catòlica 1,649
- Bíblia 1,461
- Moral cristiana 1,288
- Obres anteriors al 1800 1,073
- Teología dogmática 1,069
- Teología 1,012
- Iglesia Católica 959
- Sermones 894
- Derecho canónico 874
- Crítica e interpretación 824
- Congressos 752
- Filosofía 649
- Litúrgia 603
- History 589
- Biografia 570
- Teologia 540
- Filosofia 505
- Crítica i interpretació 496
- Economía 492
- Teologia moral 489
- -Historia 461
- Comentaris 457
- Dret canònic 456
- Espiritualidad 447
- Derecho 441
- Meditaciones 436
- obras anteriores a 1800 408
-
301
-
302
-
303
-
304por Baldock, Sarah. authorTabla de Contenidos: “…Contents at a Glance; Introduction; Chapter 1: R Fundamentals; Downloading and Installing R; Getting Orientated; The R Console and Command Prompt; Functions; Objects; Simple Objects; Vectors; Data Frames; The Data Editor; Workspaces; Error Messages; Script Files; Summary; Chapter 2: Working with Data Files; Entering Data Directly; Importing Plain Text Files; CSV and Tab-Delimited Files; DIF Files; Other Plain Text Files; Importing Excel Files; Importing Files from Other Software; Using Relative File Paths; Exporting Datasets; Summary; Chapter 3: Preparing and Manipulating Your Data; Variables…”
Publicado 2014
Libro electrónico -
305Publicado 2015“…Comprehensive, coherent, and practical, The Scrumban [R]Evolution will help you incrementally apply proven Lean/Agile principles to get what matters most: pragmatic, bottom-line results. …”
Libro electrónico -
306Publicado 2015Tabla de Contenidos: “…Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introducing Machine Learning; The origins of machine learning; Uses and abuses of machine learning; Machine learning successes; The limits of machine learning; Machine learning ethics; How machines learn; Data storage; Abstraction; Generalization; Evaluation; Machine learning in practice; Types of input data; Types of machine learning algorithms; Matching input data to algorithms; Machine learning with R; Installing R packages; Loading and unloading R packages; Summary…”
Libro electrónico -
307
-
308
-
309por Conlan, Chris. authorTabla de Contenidos: “…Part 1: Problem Scope -- Chapter 1: Fundamentals of Automated Trading -- Chapter 2: Networking Part I: Fetching Data -- Part 2: Building the Platform -- Chapter 3: Data Preparation -- Chapter 4: Indicators -- Chapter 5: Rule Sets -- Chapter 6: High-Performance Computing -- Chapter 7: Simulation and Backtesting -- Chapter 8: Optimization -- Chapter 9: Networking Part II -- Chapter 10: Organizing and Automating Scripts -- Part 3: Production Trading -- Chapter 11: Looking Forward -- Chapter 12: Appendix A: Source Code -- Chapter 13: Appendix B: Scoping in Multicore R -- …”
Publicado 2016
Libro electrónico -
310Publicado 2018Tabla de Contenidos: “…Part 1: The tools of the trade -- R: what it does and how it does it -- Working with packages -- Getting graphic -- Part 2: Interacting with a user -- Working with a browser -- Dashboards--how dashing! …”
Libro electrónico -
311Publicado 2023Tabla de Contenidos: “…Technical requirements -- Facet grids -- Map plots -- Time series plots -- 3D plots -- Adding interactivity to graphics -- Summary -- Exercises -- Further reading -- Chapter 12: Other Data Visualization Options -- Technical requirements -- Plotting graphics in Microsoft Power BI using R -- Preparing data for plotting -- Creating word clouds in RStudio -- Summary -- Exercises -- Further reading -- Part 4: Modeling -- Chapter 13: Building a Model with R -- Technical requirements -- Machine learning concepts -- Classification models -- Regression models -- Supervised and unsupervised learning -- Understanding the project -- The dataset -- The project -- The algorithm -- Preparing data for modeling in R -- Exploring the data with a few visualizations -- Selecting the best variables -- Modeling -- Training -- Testing and evaluating the model -- Predicting -- Summary -- Exercises -- Further reading -- Chapter 14: Build an Application with Shiny in R -- Technical requirements -- Learning the basics of Shiny -- Get started -- Basic functions -- Creating an application -- The project -- Coding -- Deploying the application on the web -- Summary -- Exercises -- Further reading -- Conclusion -- References -- Index -- Other Books You May Enjoy…”
Libro electrónico -
312
-
313
-
314
-
315por Das, SubhajitTabla de Contenidos: “…Why use R for causal inference? -- Getting started with R -- Setting up the R environment -- Navigating the RStudio interface -- Basic R programming concepts -- Data types in R -- Advanced data structures -- Packages in R -- Preparing for causal inference in R -- Preparing and loading data -- Exploratory data analysis (EDA) -- Simple causal inference techniques -- Comparing means (t-tests) -- Regression analysis -- Propensity score matching -- Case study - a basic causal analysis in R -- Data preparation and inspection -- Understanding the data -- Performing causal analysis -- Summary -- References -- Part 2: Practical Applications and Core Methods -- Chapter 4: Constructing Causality Models with Graphs -- Technical requirements -- Basics of graph theory -- Types of graphs - directed versus undirected…”
Publicado 2024
Libro electrónico -
316Publicado 2016Libro electrónico
-
317por Ortíz de Landazuri, CarlosMaterias: “…Popper, Karl R. (Karl Raimund), 1902-1994. Conjectures and refutations…”
Publicado 1981
991007455159706719 -
318
-
319
-
320