Mostrando 361 - 380 Resultados de 656 Para Buscar '"Monte Carlo"', tiempo de consulta: 0.12s Limitar resultados
  1. 361
    Publicado 2014
    Tabla de Contenidos: “…Front Cover; Dedication; Contents; Preface; List of Figures; List of Tables; Chapter 1: Option Pricing in a Nutshell; Chapter 2: Monte Carlo; Chapter 3: Some Excursions in Option Pricing; Chapter 4: Nonlinear PDEs: A Bit of Theory; Chapter 5: Examples of Nonlinear Problems in Finance; Chapter 6: Early Exercise Problems; Chapter 7: Backward Stochastic Differential Equations; Chapter 8: The Uncertain Lapse and Mortality Model; Chapter 9: The Uncertain Volatility Model; Chapter 10: McKean Nonlinear Stochastic Differential Equations…”
    Libro electrónico
  2. 362
    Publicado 2014
    Tabla de Contenidos: “…Unsupervised learning -- Chapter 15. Markov Chain Monte Carlo (MCMC) methods -- Chapter 16. Graphical models -- Chapter 17. …”
    Libro electrónico
  3. 363
    por Hu, Michael
    Publicado 2023
    Tabla de Contenidos: “…Part I: Foundation -- Chapter 1: Introduction to Reinforcement Learning -- Chapter 2: Markov Decision Processes -- Chapter 3: Dynamic Programming -- Chapter 4: Monte Carlo Methods -- Chapter 5: Temporal Difference Learning -- Part II: Value Function Approximation -- Chapter 6: Linear Value Function Approximation -- Chapter 7: Nonlinear Value Function Approximation -- Chapter 8: Improvement to DQN -- Part III: Policy Approximation -- Chapter 9: Policy Gradient Methods -- Chapter 10: Problems with Continuous Action Space -- Chapter 11: Advanced Policy Gradient Methods -- Part IV: Advanced Topics -- Chapter 12: Distributed Reinforcement Learning -- Chapter 13: Curiosity-Driven Exploration -- Chapter 14: Planning with a Model – AlphaZero…”
    Libro electrónico
  4. 364
    por Oliveira, Carlos
    Publicado 2023
    Tabla de Contenidos: “…Chapter 1: Options Concept -- Chapter 2: Financial Derivatives -- Chapter 3: Basic Algorithms -- Chapter 4: Object-Oriented Techniques -- Chapter 5: Design Patterns for Options Processing -- Chapter 6: C++ Template-Based Techniques -- Chapter 7: STL for Derivative Programming -- Chapter 8: Functional Programming Techniques -- Chapter 9: Linear Algebra Algorithms -- Chapter 10: Numerical Analysis Algorithms in C++ -- Chapter 11: Solving Models Based on Differential Equations -- Chapter 12: Basic Models for Options Pricing -- Chapter 13: Monte-Carlo Techniques for Options Pricing -- Chapter 14: Back Testing Option Strategies -- Chapter 15: Using C++ libraries for Finance -- Chapter 16: Credit Derivatives -- Chapter 17: Processing Financial Data…”
    Libro electrónico
  5. 365
    Publicado 2012
    Tabla de Contenidos: “…Linear Systems Response, State-Space Modeling, and Monte Carlo Simulation -- PART 2. KALMAN FILTERING AND APPLICATIONS Chapter 4. …”
    Libro electrónico
  6. 366
    Publicado 1995
    Tabla de Contenidos: “…6.3 Scale and Resolution6.4 The Dilation Equation and the Haar Transform; 6.5 Decomposition and Reconstruction; 6.6 Compression; 6.7 Coefficient Conditions; 6.8 Multiresolution Analysis; 6.9 Wavelets in the Fourier Domain; 6.10 Two-Dimensional Wavelets; 6.11 Further Reading; 6.12 Exercises; Chapter 7. Monte Carlo Integration; 7.1 Introduction; 7.2 Basic Monte Carlo Ideas; 7.3 Confidence; 7.4 Blind Monte Carlo; 7.5 Informed Monte Carlo; 7.6 Adaptive Sampling; 7.7 Other Approaches; 7.8 Summary; 7.9 Further Reading; 7.10 Exercises; Chapter 8. …”
    Libro electrónico
  7. 367
    Publicado 2022
    “…A key advantage of this model is given by the ability to generate multi-mode predictions in a single inference step, thus avoiding the need for Monte Carlo simulation…”
    Libro electrónico
  8. 368
    por Lo, Andrew W.
    Publicado 1999
    Libro
  9. 369
    Publicado 1992
    Grabación musical
  10. 370
    Publicado 2017
    Tabla de Contenidos: “…Fundamentals of Detection Theory; 12. Monte Carlo Methods for Statistical Signal Processing; 13. …”
    Libro electrónico
  11. 371
    Tabla de Contenidos:
    Libro electrónico
  12. 372
    Publicado 2017
    Tabla de Contenidos: “…SVD applied on handwritten digits using scikit-learn -- Deep auto encoders -- Model building technique using encoder-decoder architecture -- Deep auto encoders applied on handwritten digits using Keras -- Summary -- Chapter 9: Reinforcement Learning -- Introduction to reinforcement learning -- Comparing supervised, unsupervised, and reinforcement learning in detail -- Characteristics of reinforcement learning -- Reinforcement learning basics -- Category 1 - value based -- Category 2 - policy based -- Category 3 - actor-critic -- Category 4 - model-free -- Category 5 - model-based -- Fundamental categories in sequential decision making -- Markov decision processes and Bellman equations -- Dynamic programming -- Algorithms to compute optimal policy using dynamic programming -- Grid world example using value and policy iteration algorithms with basic Python -- Monte Carlo methods -- Comparison between dynamic programming and Monte Carlo methods -- Key advantages of MC over DP methods -- Monte Carlo prediction -- The suitability of Monte Carlo prediction on grid-world problems -- Modeling Blackjack example of Monte Carlo methods using Python -- Temporal difference learning -- Comparison between Monte Carlo methods and temporal difference learning -- TD prediction -- Driving office example for TD learning -- SARSA on-policy TD control -- Q-learning - off-policy TD control -- Cliff walking example of on-policy and off-policy of TD control -- Applications of reinforcement learning with integration of machine learning and deep learning -- Automotive vehicle control - self-driving cars -- Google DeepMind's AlphaGo -- Robo soccer -- Further reading -- Summary -- Index…”
    Libro electrónico
  13. 373
  14. 374
    Publicado 2019
    “…Now you can create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, cellular automata, and clusters. …”
    Libro electrónico
  15. 375
    Publicado 1990
    CDROM
  16. 376
    Publicado 2014
    Tabla de Contenidos: “…Front Cover; Contents; Preface; Acknowledgements; Author; Chapter 1: Analytics Background and Architectures; Chapter 2: Mathematical and Statistical Preliminaries; Chapter 3: Statistics for Descriptive Analytics; Chapter 4: Bayesian Probability and Inference; Chapter 5: Inferential Statistics and Predictive Analytics; Chapter 6: Artificial Intelligence for Symbolic Analytics; Chapter 7: Probabilistic Graphical Modeling; Chapter 8: Decision Support and Prescriptive Analytics; Chapter 9: Time Series Modeling and Forecasting; Chapter 10: Monte Carlo Simulation…”
    Libro electrónico
  17. 377
    Publicado 2015
    Tabla de Contenidos: “…Chapter 8: Modeling and Simulation of Single-Event Effects in Devices and CircuitsChapter 9: Soft-Error Rate (SER) Monte Carlo Simulation Codes; Chapter 10: Scaling Effects and Their Implications for Soft Errors; Chapter 11: Natural Radiation in Nonvolatile Memories: A Case Study; Chapter 12: SOI, FinFET, and Emerging Devices; Back Cover…”
    Libro electrónico
  18. 378
    por Aichinger, Michael, 1979-
    Publicado 2013
    Tabla de Contenidos: “…6.6.1 Double Barrier Options and Dirichlet Boundary Conditions -- 6.6.2 Artificial Boundary Conditions and the Neumann Case -- 7 Finite Element Methods -- 7.1 Introduction -- 7.1.1 Weighted Residual Methods -- 7.1.2 Basic Steps -- 7.2 Grid Generation -- 7.3 Elements -- 7.3.1 1D Elements -- 7.3.2 2D Elements -- 7.4 The Assembling Process -- 7.4.1 Element Matrices -- 7.4.2 Time Discretization -- 7.4.3 Global Matrices -- 7.4.4 Boundary Conditions -- 7.4.5 Application of the Finite Element Method to Convection-Diffusion-Reaction Problems -- 7.5 A Zero Coupon Bond Under the Two Factor Hull-White Model -- 7.6 Appendix: Higher Order Elements -- 7.6.1 3D Elements -- 7.6.2 Local and Natural Coordinates -- 8 Solving Systems of Linear Equations -- 8.1 Direct Methods -- 8.1.1 Gaussian Elimination -- 8.1.2 Thomas Algorithm -- 8.1.3 LU Decomposition -- 8.1.4 Cholesky Decomposition -- 8.2 Iterative Solvers -- 8.2.1 Matrix Decomposition -- 8.2.2 Krylov Methods -- 8.2.3 Multigrid Solvers -- 8.2.4 Preconditioning -- 9 Monte Carlo Simulation -- 9.1 The Principles of Monte Carlo Integration -- 9.2 Pricing Derivatives with Monte Carlo Methods -- 9.2.1 Discretizing the Stochastic Differential Equation -- 9.2.2 Pricing Formalism -- 9.2.3 Valuation of a Steepener under a Two Factor Hull-White Model -- 9.3 An Introduction to the Libor Market Model -- 9.4 Random Number Generation -- 9.4.1 Properties of a Random Number Generator -- 9.4.2 Uniform Variates -- 9.4.3 Random Vectors -- 9.4.4 Recent Developments in Random Number Generation -- 9.4.5 Transforming Variables -- 9.4.6 Random Number Generation for Commonly Used Distributions -- 10 Advanced Monte Carlo Techniques -- 10.1 Variance Reduction Techniques -- 10.1.1 Antithetic Variates -- 10.1.2 Control Variates -- 10.1.3 Conditioning -- 10.1.4 Additional Techniques for Variance Reduction -- 10.2 Quasi Monte Carlo Method…”
    Libro electrónico
  19. 379
    por Ripley, Brian D.
    Publicado 2009
    Tabla de Contenidos: “…Variance Reduction; 5.1. Monte-Carlo Integration; 5.2. Importance Sampling; 5.3. …”
    Libro electrónico
  20. 380
    Publicado 2015
    Tabla de Contenidos: “…Stochastic Volatility and Realized Stochastic Volatility Models; 22. Monte Carlo Methods and Zero Variance Principle; 23. …”
    Libro electrónico